Black-Box Optimization Revisited: Improving Algorithm Selection Wizards through Massive Benchmarking

Existing studies in black-box optimization for machine learning suffer from low generalizability, caused by a typically selective choice of problem instances used for training and testing different optimization algorithms. Among other issues, this practice promotes overfitting and poor-performing us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-02
Hauptverfasser: Meunier, Laurent, Rakotoarison, Herilalaina, Pak Kan Wong, Roziere, Baptiste, Rapin, Jeremy, Teytaud, Olivier, Moreau, Antoine, Doerr, Carola
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!