Producing a magnetized low energy, high electron charge density state using a split cathode

When a magnetized annular relativistic electron beam propagating in a conducting tube carries a charge higher than the space charge limit, it can stabilize at a lower energy and higher density state. Such a charge distribution can be used as an electron source in high power microwave devices, a rela...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2020-10, Vol.27 (10)
Hauptverfasser: Leopold, J. G., Krasik, Ya. E., Bliokh, Y. P., Schamiloglu, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Physics of plasmas
container_volume 27
creator Leopold, J. G.
Krasik, Ya. E.
Bliokh, Y. P.
Schamiloglu, E.
description When a magnetized annular relativistic electron beam propagating in a conducting tube carries a charge higher than the space charge limit, it can stabilize at a lower energy and higher density state. Such a charge distribution can be used as an electron source in high power microwave devices, a relativistic magnetron in particular, and in other applications. The limiting current transmitted by the beam decreases in tubes with larger radii, so in a tube with a radial transition from a small to large radius, the current can over-inject the downstream tube. This can start a dynamical process which stabilizes as a high density state. The same effect can be achieved by increasing the magnetic field in a magnetic mirror-like scheme or by adding a slowing down potential in the electron beam's route. Here, we propose a simpler, more practical way to produce such a dense state by splitting the cathode into an emitter and a reflector. This scheme is tested in simulation and experiment.
doi_str_mv 10.1063/5.0022115
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2450666538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450666538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-cf28ae010f25ae6d464f12a40e3e7ecb0b19059736f2db3c165e346fe7256dad3</originalsourceid><addsrcrecordid>eNqd0MtKw0AUBuAgCtbqwjcYcKWYOvekSyneoKALBcHFMJ05uZQ0E2cmSn16U1Jw7-qcxcd_OH-SnBM8I1iyGzHDmFJCxEEyITifp5nM-OFuz3AqJX8_Tk5CWGOMuRT5JPl48c72pm5LpNFGly3E-gcsatw3ghZ8ub1GVV1WCBow0bsWmUr7EpCFNtRxi0LUEVAfxoTQNXVERsfKWThNjgrdBDjbz2nydn_3unhMl88PT4vbZWqYpDE1Bc01YIILKjRIyyUvCNUcA4MMzAqvyByLecZkQe2KGSIFMC4LyKiQVls2TS7G3M67zx5CVGvX-3Y4qSgXWEopWD6oy1EZ70LwUKjO1xvtt4pgtetOCbXvbrBXow2mHv6rXfs__OX8H1SdLdgv2BR9NQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450666538</pqid></control><display><type>article</type><title>Producing a magnetized low energy, high electron charge density state using a split cathode</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Leopold, J. G. ; Krasik, Ya. E. ; Bliokh, Y. P. ; Schamiloglu, E.</creator><creatorcontrib>Leopold, J. G. ; Krasik, Ya. E. ; Bliokh, Y. P. ; Schamiloglu, E.</creatorcontrib><description>When a magnetized annular relativistic electron beam propagating in a conducting tube carries a charge higher than the space charge limit, it can stabilize at a lower energy and higher density state. Such a charge distribution can be used as an electron source in high power microwave devices, a relativistic magnetron in particular, and in other applications. The limiting current transmitted by the beam decreases in tubes with larger radii, so in a tube with a radial transition from a small to large radius, the current can over-inject the downstream tube. This can start a dynamical process which stabilizes as a high density state. The same effect can be achieved by increasing the magnetic field in a magnetic mirror-like scheme or by adding a slowing down potential in the electron beam's route. Here, we propose a simpler, more practical way to produce such a dense state by splitting the cathode into an emitter and a reflector. This scheme is tested in simulation and experiment.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0022115</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Cathodes ; Charge density ; Charge distribution ; Current carriers ; Electron charge distribution ; Emitters ; Emitters (electron) ; Magnetic mirrors ; Plasma physics ; Relativistic effects ; Relativistic electron beams ; Space charge ; Tubes</subject><ispartof>Physics of plasmas, 2020-10, Vol.27 (10)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-cf28ae010f25ae6d464f12a40e3e7ecb0b19059736f2db3c165e346fe7256dad3</citedby><cites>FETCH-LOGICAL-c362t-cf28ae010f25ae6d464f12a40e3e7ecb0b19059736f2db3c165e346fe7256dad3</cites><orcidid>0000-0001-7575-3814 ; 0000-0003-2288-3732 ; 0000-0003-3032-9141 ; 0000-0001-9356-1293</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/5.0022115$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Leopold, J. G.</creatorcontrib><creatorcontrib>Krasik, Ya. E.</creatorcontrib><creatorcontrib>Bliokh, Y. P.</creatorcontrib><creatorcontrib>Schamiloglu, E.</creatorcontrib><title>Producing a magnetized low energy, high electron charge density state using a split cathode</title><title>Physics of plasmas</title><description>When a magnetized annular relativistic electron beam propagating in a conducting tube carries a charge higher than the space charge limit, it can stabilize at a lower energy and higher density state. Such a charge distribution can be used as an electron source in high power microwave devices, a relativistic magnetron in particular, and in other applications. The limiting current transmitted by the beam decreases in tubes with larger radii, so in a tube with a radial transition from a small to large radius, the current can over-inject the downstream tube. This can start a dynamical process which stabilizes as a high density state. The same effect can be achieved by increasing the magnetic field in a magnetic mirror-like scheme or by adding a slowing down potential in the electron beam's route. Here, we propose a simpler, more practical way to produce such a dense state by splitting the cathode into an emitter and a reflector. This scheme is tested in simulation and experiment.</description><subject>Cathodes</subject><subject>Charge density</subject><subject>Charge distribution</subject><subject>Current carriers</subject><subject>Electron charge distribution</subject><subject>Emitters</subject><subject>Emitters (electron)</subject><subject>Magnetic mirrors</subject><subject>Plasma physics</subject><subject>Relativistic effects</subject><subject>Relativistic electron beams</subject><subject>Space charge</subject><subject>Tubes</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqd0MtKw0AUBuAgCtbqwjcYcKWYOvekSyneoKALBcHFMJ05uZQ0E2cmSn16U1Jw7-qcxcd_OH-SnBM8I1iyGzHDmFJCxEEyITifp5nM-OFuz3AqJX8_Tk5CWGOMuRT5JPl48c72pm5LpNFGly3E-gcsatw3ghZ8ub1GVV1WCBow0bsWmUr7EpCFNtRxi0LUEVAfxoTQNXVERsfKWThNjgrdBDjbz2nydn_3unhMl88PT4vbZWqYpDE1Bc01YIILKjRIyyUvCNUcA4MMzAqvyByLecZkQe2KGSIFMC4LyKiQVls2TS7G3M67zx5CVGvX-3Y4qSgXWEopWD6oy1EZ70LwUKjO1xvtt4pgtetOCbXvbrBXow2mHv6rXfs__OX8H1SdLdgv2BR9NQ</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Leopold, J. G.</creator><creator>Krasik, Ya. E.</creator><creator>Bliokh, Y. P.</creator><creator>Schamiloglu, E.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7575-3814</orcidid><orcidid>https://orcid.org/0000-0003-2288-3732</orcidid><orcidid>https://orcid.org/0000-0003-3032-9141</orcidid><orcidid>https://orcid.org/0000-0001-9356-1293</orcidid></search><sort><creationdate>202010</creationdate><title>Producing a magnetized low energy, high electron charge density state using a split cathode</title><author>Leopold, J. G. ; Krasik, Ya. E. ; Bliokh, Y. P. ; Schamiloglu, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-cf28ae010f25ae6d464f12a40e3e7ecb0b19059736f2db3c165e346fe7256dad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cathodes</topic><topic>Charge density</topic><topic>Charge distribution</topic><topic>Current carriers</topic><topic>Electron charge distribution</topic><topic>Emitters</topic><topic>Emitters (electron)</topic><topic>Magnetic mirrors</topic><topic>Plasma physics</topic><topic>Relativistic effects</topic><topic>Relativistic electron beams</topic><topic>Space charge</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leopold, J. G.</creatorcontrib><creatorcontrib>Krasik, Ya. E.</creatorcontrib><creatorcontrib>Bliokh, Y. P.</creatorcontrib><creatorcontrib>Schamiloglu, E.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leopold, J. G.</au><au>Krasik, Ya. E.</au><au>Bliokh, Y. P.</au><au>Schamiloglu, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Producing a magnetized low energy, high electron charge density state using a split cathode</atitle><jtitle>Physics of plasmas</jtitle><date>2020-10</date><risdate>2020</risdate><volume>27</volume><issue>10</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>When a magnetized annular relativistic electron beam propagating in a conducting tube carries a charge higher than the space charge limit, it can stabilize at a lower energy and higher density state. Such a charge distribution can be used as an electron source in high power microwave devices, a relativistic magnetron in particular, and in other applications. The limiting current transmitted by the beam decreases in tubes with larger radii, so in a tube with a radial transition from a small to large radius, the current can over-inject the downstream tube. This can start a dynamical process which stabilizes as a high density state. The same effect can be achieved by increasing the magnetic field in a magnetic mirror-like scheme or by adding a slowing down potential in the electron beam's route. Here, we propose a simpler, more practical way to produce such a dense state by splitting the cathode into an emitter and a reflector. This scheme is tested in simulation and experiment.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0022115</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7575-3814</orcidid><orcidid>https://orcid.org/0000-0003-2288-3732</orcidid><orcidid>https://orcid.org/0000-0003-3032-9141</orcidid><orcidid>https://orcid.org/0000-0001-9356-1293</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2020-10, Vol.27 (10)
issn 1070-664X
1089-7674
language eng
recordid cdi_proquest_journals_2450666538
source AIP Journals Complete; Alma/SFX Local Collection
subjects Cathodes
Charge density
Charge distribution
Current carriers
Electron charge distribution
Emitters
Emitters (electron)
Magnetic mirrors
Plasma physics
Relativistic effects
Relativistic electron beams
Space charge
Tubes
title Producing a magnetized low energy, high electron charge density state using a split cathode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T23%3A37%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Producing%20a%20magnetized%20low%20energy,%20high%20electron%20charge%20density%20state%20using%20a%20split%20cathode&rft.jtitle=Physics%20of%20plasmas&rft.au=Leopold,%20J.%20G.&rft.date=2020-10&rft.volume=27&rft.issue=10&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0022115&rft_dat=%3Cproquest_scita%3E2450666538%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450666538&rft_id=info:pmid/&rfr_iscdi=true