Evaluation of in-situ coated porous structures for hybrid heat pumps

One of the main limitations for the wide diffusion of sorption systems, either as stand-alone and in hybrid configurations, is the low heat transfer inside the adsorber, as well as the low volumetric cooling power. In this context, the present paper reports the experimental activity on four differen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2020-10, Vol.209, p.118313, Article 118313
Hauptverfasser: Palomba, V., Lombardo, W., Groβe, A., Herrmann, R., Nitsch, B., Strehlow, A., Bastian, R., Sapienza, A., Frazzica, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 118313
container_title Energy (Oxford)
container_volume 209
creator Palomba, V.
Lombardo, W.
Groβe, A.
Herrmann, R.
Nitsch, B.
Strehlow, A.
Bastian, R.
Sapienza, A.
Frazzica, A.
description One of the main limitations for the wide diffusion of sorption systems, either as stand-alone and in hybrid configurations, is the low heat transfer inside the adsorber, as well as the low volumetric cooling power. In this context, the present paper reports the experimental activity on four different advanced configurations for the adsorber, based on microchannel heat exchangers where the gap between the channels is filled with porous structures where zeotypes of SAPO-34 family were synthetized. The porous structures evaluated are high-density fins, two different aluminium foams and compressed chips from the waste of aluminium machining. The sorption dynamic and cooling power density of each structure were measured through a Gravimetric Large Temperature Jump testing apparatus. The results obtained showed that the best-performing configuration is the one with high-density fins, that, for a 90/30/20 °C cycle showed a Specific Cooling Power up to 1.1 kW/kg. The other structures exhibit a much slower adsorption process, corresponding to power densities of about 0.3 kW/kg. The results were used for sizing a full-scale adsorber, whose expected Volumetric Cooling Power is 500 kW/m3.
doi_str_mv 10.1016/j.energy.2020.118313
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450652388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544220314201</els_id><sourcerecordid>2450652388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-cf5e68b567c9950c7c72b02ba341971e82ee63b41ec5b6fa764c85aa3e81cc2c3</originalsourceid><addsrcrecordid>eNp9kElrwzAUhEVpoenyD3oQ9OxUiyXLl0JJ0wUCvbRnIcvPjUxiuVoC-fd1cM89DTxm5jEfQneULCmh8qFfwgDh-7hkhE0nqjjlZ2hBVcULWSlxjhaES1KIsmSX6CrGnhAiVF0v0PP6YHbZJOcH7DvshiK6lLH1JkGLRx98jjimkG3KASLufMDbYxNci7dgEh7zfow36KIzuwi3f3qNvl7Wn6u3YvPx-r562hSWK5IK2wmQqhGysnUtiK1sxRrCGsNLWlcUFAOQvCkpWNHIzlSytEoYw0FRa5nl1-h-7h2D_8kQk-59DsP0UrNSECkYV2pylbPLBh9jgE6Pwe1NOGpK9ImX7vXMS5946ZnXFHucYzAtODgIOloHg4XWBbBJt979X_ALYbx1zg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450652388</pqid></control><display><type>article</type><title>Evaluation of in-situ coated porous structures for hybrid heat pumps</title><source>Elsevier ScienceDirect Journals</source><creator>Palomba, V. ; Lombardo, W. ; Groβe, A. ; Herrmann, R. ; Nitsch, B. ; Strehlow, A. ; Bastian, R. ; Sapienza, A. ; Frazzica, A.</creator><creatorcontrib>Palomba, V. ; Lombardo, W. ; Groβe, A. ; Herrmann, R. ; Nitsch, B. ; Strehlow, A. ; Bastian, R. ; Sapienza, A. ; Frazzica, A.</creatorcontrib><description>One of the main limitations for the wide diffusion of sorption systems, either as stand-alone and in hybrid configurations, is the low heat transfer inside the adsorber, as well as the low volumetric cooling power. In this context, the present paper reports the experimental activity on four different advanced configurations for the adsorber, based on microchannel heat exchangers where the gap between the channels is filled with porous structures where zeotypes of SAPO-34 family were synthetized. The porous structures evaluated are high-density fins, two different aluminium foams and compressed chips from the waste of aluminium machining. The sorption dynamic and cooling power density of each structure were measured through a Gravimetric Large Temperature Jump testing apparatus. The results obtained showed that the best-performing configuration is the one with high-density fins, that, for a 90/30/20 °C cycle showed a Specific Cooling Power up to 1.1 kW/kg. The other structures exhibit a much slower adsorption process, corresponding to power densities of about 0.3 kW/kg. The results were used for sizing a full-scale adsorber, whose expected Volumetric Cooling Power is 500 kW/m3.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2020.118313</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Adsorption ; Aluminum ; Configuration management ; Cooling ; Diffusion pumps ; Dynamics ; Evaluation ; Fins ; Foams ; Gravimetry ; Heat and mass transfer ; Heat exchangers ; Heat pumps ; Heat transfer ; Hybrid chiller ; Machining ; Metal foams ; Microchannels ; SAPO-34 ; Sorption ; Test equipment</subject><ispartof>Energy (Oxford), 2020-10, Vol.209, p.118313, Article 118313</ispartof><rights>2020 The Author(s)</rights><rights>Copyright Elsevier BV Oct 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-cf5e68b567c9950c7c72b02ba341971e82ee63b41ec5b6fa764c85aa3e81cc2c3</citedby><cites>FETCH-LOGICAL-c380t-cf5e68b567c9950c7c72b02ba341971e82ee63b41ec5b6fa764c85aa3e81cc2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360544220314201$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Palomba, V.</creatorcontrib><creatorcontrib>Lombardo, W.</creatorcontrib><creatorcontrib>Groβe, A.</creatorcontrib><creatorcontrib>Herrmann, R.</creatorcontrib><creatorcontrib>Nitsch, B.</creatorcontrib><creatorcontrib>Strehlow, A.</creatorcontrib><creatorcontrib>Bastian, R.</creatorcontrib><creatorcontrib>Sapienza, A.</creatorcontrib><creatorcontrib>Frazzica, A.</creatorcontrib><title>Evaluation of in-situ coated porous structures for hybrid heat pumps</title><title>Energy (Oxford)</title><description>One of the main limitations for the wide diffusion of sorption systems, either as stand-alone and in hybrid configurations, is the low heat transfer inside the adsorber, as well as the low volumetric cooling power. In this context, the present paper reports the experimental activity on four different advanced configurations for the adsorber, based on microchannel heat exchangers where the gap between the channels is filled with porous structures where zeotypes of SAPO-34 family were synthetized. The porous structures evaluated are high-density fins, two different aluminium foams and compressed chips from the waste of aluminium machining. The sorption dynamic and cooling power density of each structure were measured through a Gravimetric Large Temperature Jump testing apparatus. The results obtained showed that the best-performing configuration is the one with high-density fins, that, for a 90/30/20 °C cycle showed a Specific Cooling Power up to 1.1 kW/kg. The other structures exhibit a much slower adsorption process, corresponding to power densities of about 0.3 kW/kg. The results were used for sizing a full-scale adsorber, whose expected Volumetric Cooling Power is 500 kW/m3.</description><subject>Adsorption</subject><subject>Aluminum</subject><subject>Configuration management</subject><subject>Cooling</subject><subject>Diffusion pumps</subject><subject>Dynamics</subject><subject>Evaluation</subject><subject>Fins</subject><subject>Foams</subject><subject>Gravimetry</subject><subject>Heat and mass transfer</subject><subject>Heat exchangers</subject><subject>Heat pumps</subject><subject>Heat transfer</subject><subject>Hybrid chiller</subject><subject>Machining</subject><subject>Metal foams</subject><subject>Microchannels</subject><subject>SAPO-34</subject><subject>Sorption</subject><subject>Test equipment</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kElrwzAUhEVpoenyD3oQ9OxUiyXLl0JJ0wUCvbRnIcvPjUxiuVoC-fd1cM89DTxm5jEfQneULCmh8qFfwgDh-7hkhE0nqjjlZ2hBVcULWSlxjhaES1KIsmSX6CrGnhAiVF0v0PP6YHbZJOcH7DvshiK6lLH1JkGLRx98jjimkG3KASLufMDbYxNci7dgEh7zfow36KIzuwi3f3qNvl7Wn6u3YvPx-r562hSWK5IK2wmQqhGysnUtiK1sxRrCGsNLWlcUFAOQvCkpWNHIzlSytEoYw0FRa5nl1-h-7h2D_8kQk-59DsP0UrNSECkYV2pylbPLBh9jgE6Pwe1NOGpK9ImX7vXMS5946ZnXFHucYzAtODgIOloHg4XWBbBJt979X_ALYbx1zg</recordid><startdate>20201015</startdate><enddate>20201015</enddate><creator>Palomba, V.</creator><creator>Lombardo, W.</creator><creator>Groβe, A.</creator><creator>Herrmann, R.</creator><creator>Nitsch, B.</creator><creator>Strehlow, A.</creator><creator>Bastian, R.</creator><creator>Sapienza, A.</creator><creator>Frazzica, A.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20201015</creationdate><title>Evaluation of in-situ coated porous structures for hybrid heat pumps</title><author>Palomba, V. ; Lombardo, W. ; Groβe, A. ; Herrmann, R. ; Nitsch, B. ; Strehlow, A. ; Bastian, R. ; Sapienza, A. ; Frazzica, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-cf5e68b567c9950c7c72b02ba341971e82ee63b41ec5b6fa764c85aa3e81cc2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorption</topic><topic>Aluminum</topic><topic>Configuration management</topic><topic>Cooling</topic><topic>Diffusion pumps</topic><topic>Dynamics</topic><topic>Evaluation</topic><topic>Fins</topic><topic>Foams</topic><topic>Gravimetry</topic><topic>Heat and mass transfer</topic><topic>Heat exchangers</topic><topic>Heat pumps</topic><topic>Heat transfer</topic><topic>Hybrid chiller</topic><topic>Machining</topic><topic>Metal foams</topic><topic>Microchannels</topic><topic>SAPO-34</topic><topic>Sorption</topic><topic>Test equipment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palomba, V.</creatorcontrib><creatorcontrib>Lombardo, W.</creatorcontrib><creatorcontrib>Groβe, A.</creatorcontrib><creatorcontrib>Herrmann, R.</creatorcontrib><creatorcontrib>Nitsch, B.</creatorcontrib><creatorcontrib>Strehlow, A.</creatorcontrib><creatorcontrib>Bastian, R.</creatorcontrib><creatorcontrib>Sapienza, A.</creatorcontrib><creatorcontrib>Frazzica, A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palomba, V.</au><au>Lombardo, W.</au><au>Groβe, A.</au><au>Herrmann, R.</au><au>Nitsch, B.</au><au>Strehlow, A.</au><au>Bastian, R.</au><au>Sapienza, A.</au><au>Frazzica, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of in-situ coated porous structures for hybrid heat pumps</atitle><jtitle>Energy (Oxford)</jtitle><date>2020-10-15</date><risdate>2020</risdate><volume>209</volume><spage>118313</spage><pages>118313-</pages><artnum>118313</artnum><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>One of the main limitations for the wide diffusion of sorption systems, either as stand-alone and in hybrid configurations, is the low heat transfer inside the adsorber, as well as the low volumetric cooling power. In this context, the present paper reports the experimental activity on four different advanced configurations for the adsorber, based on microchannel heat exchangers where the gap between the channels is filled with porous structures where zeotypes of SAPO-34 family were synthetized. The porous structures evaluated are high-density fins, two different aluminium foams and compressed chips from the waste of aluminium machining. The sorption dynamic and cooling power density of each structure were measured through a Gravimetric Large Temperature Jump testing apparatus. The results obtained showed that the best-performing configuration is the one with high-density fins, that, for a 90/30/20 °C cycle showed a Specific Cooling Power up to 1.1 kW/kg. The other structures exhibit a much slower adsorption process, corresponding to power densities of about 0.3 kW/kg. The results were used for sizing a full-scale adsorber, whose expected Volumetric Cooling Power is 500 kW/m3.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2020.118313</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2020-10, Vol.209, p.118313, Article 118313
issn 0360-5442
1873-6785
language eng
recordid cdi_proquest_journals_2450652388
source Elsevier ScienceDirect Journals
subjects Adsorption
Aluminum
Configuration management
Cooling
Diffusion pumps
Dynamics
Evaluation
Fins
Foams
Gravimetry
Heat and mass transfer
Heat exchangers
Heat pumps
Heat transfer
Hybrid chiller
Machining
Metal foams
Microchannels
SAPO-34
Sorption
Test equipment
title Evaluation of in-situ coated porous structures for hybrid heat pumps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A34%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20in-situ%20coated%20porous%20structures%20for%20hybrid%20heat%20pumps&rft.jtitle=Energy%20(Oxford)&rft.au=Palomba,%20V.&rft.date=2020-10-15&rft.volume=209&rft.spage=118313&rft.pages=118313-&rft.artnum=118313&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2020.118313&rft_dat=%3Cproquest_cross%3E2450652388%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450652388&rft_id=info:pmid/&rft_els_id=S0360544220314201&rfr_iscdi=true