Evaluation of in-situ coated porous structures for hybrid heat pumps
One of the main limitations for the wide diffusion of sorption systems, either as stand-alone and in hybrid configurations, is the low heat transfer inside the adsorber, as well as the low volumetric cooling power. In this context, the present paper reports the experimental activity on four differen...
Gespeichert in:
Veröffentlicht in: | Energy (Oxford) 2020-10, Vol.209, p.118313, Article 118313 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 118313 |
container_title | Energy (Oxford) |
container_volume | 209 |
creator | Palomba, V. Lombardo, W. Groβe, A. Herrmann, R. Nitsch, B. Strehlow, A. Bastian, R. Sapienza, A. Frazzica, A. |
description | One of the main limitations for the wide diffusion of sorption systems, either as stand-alone and in hybrid configurations, is the low heat transfer inside the adsorber, as well as the low volumetric cooling power. In this context, the present paper reports the experimental activity on four different advanced configurations for the adsorber, based on microchannel heat exchangers where the gap between the channels is filled with porous structures where zeotypes of SAPO-34 family were synthetized. The porous structures evaluated are high-density fins, two different aluminium foams and compressed chips from the waste of aluminium machining. The sorption dynamic and cooling power density of each structure were measured through a Gravimetric Large Temperature Jump testing apparatus. The results obtained showed that the best-performing configuration is the one with high-density fins, that, for a 90/30/20 °C cycle showed a Specific Cooling Power up to 1.1 kW/kg. The other structures exhibit a much slower adsorption process, corresponding to power densities of about 0.3 kW/kg. The results were used for sizing a full-scale adsorber, whose expected Volumetric Cooling Power is 500 kW/m3. |
doi_str_mv | 10.1016/j.energy.2020.118313 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450652388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544220314201</els_id><sourcerecordid>2450652388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-cf5e68b567c9950c7c72b02ba341971e82ee63b41ec5b6fa764c85aa3e81cc2c3</originalsourceid><addsrcrecordid>eNp9kElrwzAUhEVpoenyD3oQ9OxUiyXLl0JJ0wUCvbRnIcvPjUxiuVoC-fd1cM89DTxm5jEfQneULCmh8qFfwgDh-7hkhE0nqjjlZ2hBVcULWSlxjhaES1KIsmSX6CrGnhAiVF0v0PP6YHbZJOcH7DvshiK6lLH1JkGLRx98jjimkG3KASLufMDbYxNci7dgEh7zfow36KIzuwi3f3qNvl7Wn6u3YvPx-r562hSWK5IK2wmQqhGysnUtiK1sxRrCGsNLWlcUFAOQvCkpWNHIzlSytEoYw0FRa5nl1-h-7h2D_8kQk-59DsP0UrNSECkYV2pylbPLBh9jgE6Pwe1NOGpK9ImX7vXMS5946ZnXFHucYzAtODgIOloHg4XWBbBJt979X_ALYbx1zg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450652388</pqid></control><display><type>article</type><title>Evaluation of in-situ coated porous structures for hybrid heat pumps</title><source>Elsevier ScienceDirect Journals</source><creator>Palomba, V. ; Lombardo, W. ; Groβe, A. ; Herrmann, R. ; Nitsch, B. ; Strehlow, A. ; Bastian, R. ; Sapienza, A. ; Frazzica, A.</creator><creatorcontrib>Palomba, V. ; Lombardo, W. ; Groβe, A. ; Herrmann, R. ; Nitsch, B. ; Strehlow, A. ; Bastian, R. ; Sapienza, A. ; Frazzica, A.</creatorcontrib><description>One of the main limitations for the wide diffusion of sorption systems, either as stand-alone and in hybrid configurations, is the low heat transfer inside the adsorber, as well as the low volumetric cooling power. In this context, the present paper reports the experimental activity on four different advanced configurations for the adsorber, based on microchannel heat exchangers where the gap between the channels is filled with porous structures where zeotypes of SAPO-34 family were synthetized. The porous structures evaluated are high-density fins, two different aluminium foams and compressed chips from the waste of aluminium machining. The sorption dynamic and cooling power density of each structure were measured through a Gravimetric Large Temperature Jump testing apparatus. The results obtained showed that the best-performing configuration is the one with high-density fins, that, for a 90/30/20 °C cycle showed a Specific Cooling Power up to 1.1 kW/kg. The other structures exhibit a much slower adsorption process, corresponding to power densities of about 0.3 kW/kg. The results were used for sizing a full-scale adsorber, whose expected Volumetric Cooling Power is 500 kW/m3.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2020.118313</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Adsorption ; Aluminum ; Configuration management ; Cooling ; Diffusion pumps ; Dynamics ; Evaluation ; Fins ; Foams ; Gravimetry ; Heat and mass transfer ; Heat exchangers ; Heat pumps ; Heat transfer ; Hybrid chiller ; Machining ; Metal foams ; Microchannels ; SAPO-34 ; Sorption ; Test equipment</subject><ispartof>Energy (Oxford), 2020-10, Vol.209, p.118313, Article 118313</ispartof><rights>2020 The Author(s)</rights><rights>Copyright Elsevier BV Oct 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-cf5e68b567c9950c7c72b02ba341971e82ee63b41ec5b6fa764c85aa3e81cc2c3</citedby><cites>FETCH-LOGICAL-c380t-cf5e68b567c9950c7c72b02ba341971e82ee63b41ec5b6fa764c85aa3e81cc2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360544220314201$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Palomba, V.</creatorcontrib><creatorcontrib>Lombardo, W.</creatorcontrib><creatorcontrib>Groβe, A.</creatorcontrib><creatorcontrib>Herrmann, R.</creatorcontrib><creatorcontrib>Nitsch, B.</creatorcontrib><creatorcontrib>Strehlow, A.</creatorcontrib><creatorcontrib>Bastian, R.</creatorcontrib><creatorcontrib>Sapienza, A.</creatorcontrib><creatorcontrib>Frazzica, A.</creatorcontrib><title>Evaluation of in-situ coated porous structures for hybrid heat pumps</title><title>Energy (Oxford)</title><description>One of the main limitations for the wide diffusion of sorption systems, either as stand-alone and in hybrid configurations, is the low heat transfer inside the adsorber, as well as the low volumetric cooling power. In this context, the present paper reports the experimental activity on four different advanced configurations for the adsorber, based on microchannel heat exchangers where the gap between the channels is filled with porous structures where zeotypes of SAPO-34 family were synthetized. The porous structures evaluated are high-density fins, two different aluminium foams and compressed chips from the waste of aluminium machining. The sorption dynamic and cooling power density of each structure were measured through a Gravimetric Large Temperature Jump testing apparatus. The results obtained showed that the best-performing configuration is the one with high-density fins, that, for a 90/30/20 °C cycle showed a Specific Cooling Power up to 1.1 kW/kg. The other structures exhibit a much slower adsorption process, corresponding to power densities of about 0.3 kW/kg. The results were used for sizing a full-scale adsorber, whose expected Volumetric Cooling Power is 500 kW/m3.</description><subject>Adsorption</subject><subject>Aluminum</subject><subject>Configuration management</subject><subject>Cooling</subject><subject>Diffusion pumps</subject><subject>Dynamics</subject><subject>Evaluation</subject><subject>Fins</subject><subject>Foams</subject><subject>Gravimetry</subject><subject>Heat and mass transfer</subject><subject>Heat exchangers</subject><subject>Heat pumps</subject><subject>Heat transfer</subject><subject>Hybrid chiller</subject><subject>Machining</subject><subject>Metal foams</subject><subject>Microchannels</subject><subject>SAPO-34</subject><subject>Sorption</subject><subject>Test equipment</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kElrwzAUhEVpoenyD3oQ9OxUiyXLl0JJ0wUCvbRnIcvPjUxiuVoC-fd1cM89DTxm5jEfQneULCmh8qFfwgDh-7hkhE0nqjjlZ2hBVcULWSlxjhaES1KIsmSX6CrGnhAiVF0v0PP6YHbZJOcH7DvshiK6lLH1JkGLRx98jjimkG3KASLufMDbYxNci7dgEh7zfow36KIzuwi3f3qNvl7Wn6u3YvPx-r562hSWK5IK2wmQqhGysnUtiK1sxRrCGsNLWlcUFAOQvCkpWNHIzlSytEoYw0FRa5nl1-h-7h2D_8kQk-59DsP0UrNSECkYV2pylbPLBh9jgE6Pwe1NOGpK9ImX7vXMS5946ZnXFHucYzAtODgIOloHg4XWBbBJt979X_ALYbx1zg</recordid><startdate>20201015</startdate><enddate>20201015</enddate><creator>Palomba, V.</creator><creator>Lombardo, W.</creator><creator>Groβe, A.</creator><creator>Herrmann, R.</creator><creator>Nitsch, B.</creator><creator>Strehlow, A.</creator><creator>Bastian, R.</creator><creator>Sapienza, A.</creator><creator>Frazzica, A.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20201015</creationdate><title>Evaluation of in-situ coated porous structures for hybrid heat pumps</title><author>Palomba, V. ; Lombardo, W. ; Groβe, A. ; Herrmann, R. ; Nitsch, B. ; Strehlow, A. ; Bastian, R. ; Sapienza, A. ; Frazzica, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-cf5e68b567c9950c7c72b02ba341971e82ee63b41ec5b6fa764c85aa3e81cc2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorption</topic><topic>Aluminum</topic><topic>Configuration management</topic><topic>Cooling</topic><topic>Diffusion pumps</topic><topic>Dynamics</topic><topic>Evaluation</topic><topic>Fins</topic><topic>Foams</topic><topic>Gravimetry</topic><topic>Heat and mass transfer</topic><topic>Heat exchangers</topic><topic>Heat pumps</topic><topic>Heat transfer</topic><topic>Hybrid chiller</topic><topic>Machining</topic><topic>Metal foams</topic><topic>Microchannels</topic><topic>SAPO-34</topic><topic>Sorption</topic><topic>Test equipment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palomba, V.</creatorcontrib><creatorcontrib>Lombardo, W.</creatorcontrib><creatorcontrib>Groβe, A.</creatorcontrib><creatorcontrib>Herrmann, R.</creatorcontrib><creatorcontrib>Nitsch, B.</creatorcontrib><creatorcontrib>Strehlow, A.</creatorcontrib><creatorcontrib>Bastian, R.</creatorcontrib><creatorcontrib>Sapienza, A.</creatorcontrib><creatorcontrib>Frazzica, A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palomba, V.</au><au>Lombardo, W.</au><au>Groβe, A.</au><au>Herrmann, R.</au><au>Nitsch, B.</au><au>Strehlow, A.</au><au>Bastian, R.</au><au>Sapienza, A.</au><au>Frazzica, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of in-situ coated porous structures for hybrid heat pumps</atitle><jtitle>Energy (Oxford)</jtitle><date>2020-10-15</date><risdate>2020</risdate><volume>209</volume><spage>118313</spage><pages>118313-</pages><artnum>118313</artnum><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>One of the main limitations for the wide diffusion of sorption systems, either as stand-alone and in hybrid configurations, is the low heat transfer inside the adsorber, as well as the low volumetric cooling power. In this context, the present paper reports the experimental activity on four different advanced configurations for the adsorber, based on microchannel heat exchangers where the gap between the channels is filled with porous structures where zeotypes of SAPO-34 family were synthetized. The porous structures evaluated are high-density fins, two different aluminium foams and compressed chips from the waste of aluminium machining. The sorption dynamic and cooling power density of each structure were measured through a Gravimetric Large Temperature Jump testing apparatus. The results obtained showed that the best-performing configuration is the one with high-density fins, that, for a 90/30/20 °C cycle showed a Specific Cooling Power up to 1.1 kW/kg. The other structures exhibit a much slower adsorption process, corresponding to power densities of about 0.3 kW/kg. The results were used for sizing a full-scale adsorber, whose expected Volumetric Cooling Power is 500 kW/m3.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2020.118313</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-5442 |
ispartof | Energy (Oxford), 2020-10, Vol.209, p.118313, Article 118313 |
issn | 0360-5442 1873-6785 |
language | eng |
recordid | cdi_proquest_journals_2450652388 |
source | Elsevier ScienceDirect Journals |
subjects | Adsorption Aluminum Configuration management Cooling Diffusion pumps Dynamics Evaluation Fins Foams Gravimetry Heat and mass transfer Heat exchangers Heat pumps Heat transfer Hybrid chiller Machining Metal foams Microchannels SAPO-34 Sorption Test equipment |
title | Evaluation of in-situ coated porous structures for hybrid heat pumps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A34%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20in-situ%20coated%20porous%20structures%20for%20hybrid%20heat%20pumps&rft.jtitle=Energy%20(Oxford)&rft.au=Palomba,%20V.&rft.date=2020-10-15&rft.volume=209&rft.spage=118313&rft.pages=118313-&rft.artnum=118313&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2020.118313&rft_dat=%3Cproquest_cross%3E2450652388%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450652388&rft_id=info:pmid/&rft_els_id=S0360544220314201&rfr_iscdi=true |