Compositional modulation is driven by aliovalent doping in n-type TiCoSb based half-Heuslers for tuning thermoelectric transport
The ternary intermetallic TiCoSb based half-Heusler (HH) alloys are prominent material exhibiting good p-type thermoelectric (TE) performance. In this work, we studied the implication of V and Nb as n-type aliovalent dopants on Ti crystallographic site of semiconducting TiCoSb based HH alloys for at...
Gespeichert in:
Veröffentlicht in: | Intermetallics 2020-10, Vol.125, p.106914, Article 106914 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 106914 |
container_title | Intermetallics |
container_volume | 125 |
creator | Vishwakarma, Avinash Chauhan, Nagendra S. Bhardwaj, Ruchi Johari, Kishor Kumar Dhakate, Sanjay R. Gahtori, Bhasker Bathula, Sivaiah |
description | The ternary intermetallic TiCoSb based half-Heusler (HH) alloys are prominent material exhibiting good p-type thermoelectric (TE) performance. In this work, we studied the implication of V and Nb as n-type aliovalent dopants on Ti crystallographic site of semiconducting TiCoSb based HH alloys for attaining higher TE performance in n-type counterparts. The carrier concentration optimization between semiconducting (Ti1−xVxCoSb) and semi-metallic regime (Ti1−xNbxCoSb) had resulted in maximum TE figure-of-merit (ZT) of 0.22 and 0.52 at 873 K for optimized Ti0.85V0.15CoSb and Ti0.85Nb0.15CoSb HH compositions, respectively. These substitutional alloys were synthesized using arc-melting and consolidated using spark plasma sintering, which resulted in biphasic microstructure with in-situ phase segregation of heterogeneously distributed Ti-rich precipitates at all length scales within the HH matrix, are examined by microstructural analysis using X-ray diffraction and electron microscopy. Interestingly, higher power factor and simultaneous reduction of thermal conductivity is observed in both the doping as a result of optimal carrier concentration and enhanced phonon scattering. However, Nb-doped alloys exhibit higher carrier mobility and more significant lattice thermal conductivity reduction, thus establishing n-type Ti1−xNbxCoSb HH alloys as an equally promising counterpart of p-type TiCoSb for mid-temperature TE power generation.
[Display omitted]
•Compositional modulation by aliovalent doping in TiCoSb.•Nb-doping is better than V-doping at Ti-site in TiCoSb.•Half-Heusler alloys Ti1−xNbxCoSb with high ZT ~0.52 at 873 K.•All scale hierarchical architecture reduces lattice thermal conductivity.•Optimal concentration and higher carrier mobility results in high ZT. |
doi_str_mv | 10.1016/j.intermet.2020.106914 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450516160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0966979520304994</els_id><sourcerecordid>2450516160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-8480d2b527bda73372f0d246a463f6fdd715e06171366ddeda8e82ff4c53568d3</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-BQl47pr0T9relKKusODB9RzSZuKmtElN0oW9-dFtqZ49DW94b5j3Q-iWkg0llN23G20CuB7CJibxvGQlTc_QihZ5GZGYsnO0IiVjUZmX2SW68r4lhOYkyVbou7L9YL0O2hrR4d7KsROzwNpj6fQRDK5PWHTaHkUHJmBpB20-sTbYROE0AN7ryr7XuBYeJD6ITkVbGH0HzmNlHQ6jmf3hML1ooYMmON3g4ITxg3XhGl0o0Xm4-Z1r9PH8tK-20e7t5bV63EVNSliIirQgMq6zOK-lyJMkj9WkUyZSliimpMxpBoTRnCaMSQlSFFDESqVNlmSskMka3S13B2e_RvCBt3Z0U2fP4zQjGWWUkcnFFlfjrPcOFB-c7oU7cUr4TJu3_I82n2nzhfYUfFiCMHU4anDcNxpMA1K7qTKXVv934gc6rY6n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450516160</pqid></control><display><type>article</type><title>Compositional modulation is driven by aliovalent doping in n-type TiCoSb based half-Heuslers for tuning thermoelectric transport</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Vishwakarma, Avinash ; Chauhan, Nagendra S. ; Bhardwaj, Ruchi ; Johari, Kishor Kumar ; Dhakate, Sanjay R. ; Gahtori, Bhasker ; Bathula, Sivaiah</creator><creatorcontrib>Vishwakarma, Avinash ; Chauhan, Nagendra S. ; Bhardwaj, Ruchi ; Johari, Kishor Kumar ; Dhakate, Sanjay R. ; Gahtori, Bhasker ; Bathula, Sivaiah</creatorcontrib><description>The ternary intermetallic TiCoSb based half-Heusler (HH) alloys are prominent material exhibiting good p-type thermoelectric (TE) performance. In this work, we studied the implication of V and Nb as n-type aliovalent dopants on Ti crystallographic site of semiconducting TiCoSb based HH alloys for attaining higher TE performance in n-type counterparts. The carrier concentration optimization between semiconducting (Ti1−xVxCoSb) and semi-metallic regime (Ti1−xNbxCoSb) had resulted in maximum TE figure-of-merit (ZT) of 0.22 and 0.52 at 873 K for optimized Ti0.85V0.15CoSb and Ti0.85Nb0.15CoSb HH compositions, respectively. These substitutional alloys were synthesized using arc-melting and consolidated using spark plasma sintering, which resulted in biphasic microstructure with in-situ phase segregation of heterogeneously distributed Ti-rich precipitates at all length scales within the HH matrix, are examined by microstructural analysis using X-ray diffraction and electron microscopy. Interestingly, higher power factor and simultaneous reduction of thermal conductivity is observed in both the doping as a result of optimal carrier concentration and enhanced phonon scattering. However, Nb-doped alloys exhibit higher carrier mobility and more significant lattice thermal conductivity reduction, thus establishing n-type Ti1−xNbxCoSb HH alloys as an equally promising counterpart of p-type TiCoSb for mid-temperature TE power generation.
[Display omitted]
•Compositional modulation by aliovalent doping in TiCoSb.•Nb-doping is better than V-doping at Ti-site in TiCoSb.•Half-Heusler alloys Ti1−xNbxCoSb with high ZT ~0.52 at 873 K.•All scale hierarchical architecture reduces lattice thermal conductivity.•Optimal concentration and higher carrier mobility results in high ZT.</description><identifier>ISSN: 0966-9795</identifier><identifier>EISSN: 1879-0216</identifier><identifier>DOI: 10.1016/j.intermet.2020.106914</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Carrier concentration ; Carrier density ; Carrier mobility ; Crystallography ; Doping ; Electric arc melting ; Electric power generation ; Half-Heuslers ; Heat conductivity ; Heat transfer ; Lattice thermal conductivity ; Microstructural analysis ; Microstructure ; Niobium ; Optimization ; Plasma sintering ; Power factor ; Precipitates ; Spark plasma sintering ; Thermal conductivity ; Thermoelectric ; Thermoelectric materials ; Thermoelectricity ; Titanium</subject><ispartof>Intermetallics, 2020-10, Vol.125, p.106914, Article 106914</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-8480d2b527bda73372f0d246a463f6fdd715e06171366ddeda8e82ff4c53568d3</citedby><cites>FETCH-LOGICAL-c406t-8480d2b527bda73372f0d246a463f6fdd715e06171366ddeda8e82ff4c53568d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.intermet.2020.106914$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Vishwakarma, Avinash</creatorcontrib><creatorcontrib>Chauhan, Nagendra S.</creatorcontrib><creatorcontrib>Bhardwaj, Ruchi</creatorcontrib><creatorcontrib>Johari, Kishor Kumar</creatorcontrib><creatorcontrib>Dhakate, Sanjay R.</creatorcontrib><creatorcontrib>Gahtori, Bhasker</creatorcontrib><creatorcontrib>Bathula, Sivaiah</creatorcontrib><title>Compositional modulation is driven by aliovalent doping in n-type TiCoSb based half-Heuslers for tuning thermoelectric transport</title><title>Intermetallics</title><description>The ternary intermetallic TiCoSb based half-Heusler (HH) alloys are prominent material exhibiting good p-type thermoelectric (TE) performance. In this work, we studied the implication of V and Nb as n-type aliovalent dopants on Ti crystallographic site of semiconducting TiCoSb based HH alloys for attaining higher TE performance in n-type counterparts. The carrier concentration optimization between semiconducting (Ti1−xVxCoSb) and semi-metallic regime (Ti1−xNbxCoSb) had resulted in maximum TE figure-of-merit (ZT) of 0.22 and 0.52 at 873 K for optimized Ti0.85V0.15CoSb and Ti0.85Nb0.15CoSb HH compositions, respectively. These substitutional alloys were synthesized using arc-melting and consolidated using spark plasma sintering, which resulted in biphasic microstructure with in-situ phase segregation of heterogeneously distributed Ti-rich precipitates at all length scales within the HH matrix, are examined by microstructural analysis using X-ray diffraction and electron microscopy. Interestingly, higher power factor and simultaneous reduction of thermal conductivity is observed in both the doping as a result of optimal carrier concentration and enhanced phonon scattering. However, Nb-doped alloys exhibit higher carrier mobility and more significant lattice thermal conductivity reduction, thus establishing n-type Ti1−xNbxCoSb HH alloys as an equally promising counterpart of p-type TiCoSb for mid-temperature TE power generation.
[Display omitted]
•Compositional modulation by aliovalent doping in TiCoSb.•Nb-doping is better than V-doping at Ti-site in TiCoSb.•Half-Heusler alloys Ti1−xNbxCoSb with high ZT ~0.52 at 873 K.•All scale hierarchical architecture reduces lattice thermal conductivity.•Optimal concentration and higher carrier mobility results in high ZT.</description><subject>Carrier concentration</subject><subject>Carrier density</subject><subject>Carrier mobility</subject><subject>Crystallography</subject><subject>Doping</subject><subject>Electric arc melting</subject><subject>Electric power generation</subject><subject>Half-Heuslers</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Lattice thermal conductivity</subject><subject>Microstructural analysis</subject><subject>Microstructure</subject><subject>Niobium</subject><subject>Optimization</subject><subject>Plasma sintering</subject><subject>Power factor</subject><subject>Precipitates</subject><subject>Spark plasma sintering</subject><subject>Thermal conductivity</subject><subject>Thermoelectric</subject><subject>Thermoelectric materials</subject><subject>Thermoelectricity</subject><subject>Titanium</subject><issn>0966-9795</issn><issn>1879-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-BQl47pr0T9relKKusODB9RzSZuKmtElN0oW9-dFtqZ49DW94b5j3Q-iWkg0llN23G20CuB7CJibxvGQlTc_QihZ5GZGYsnO0IiVjUZmX2SW68r4lhOYkyVbou7L9YL0O2hrR4d7KsROzwNpj6fQRDK5PWHTaHkUHJmBpB20-sTbYROE0AN7ryr7XuBYeJD6ITkVbGH0HzmNlHQ6jmf3hML1ooYMmON3g4ITxg3XhGl0o0Xm4-Z1r9PH8tK-20e7t5bV63EVNSliIirQgMq6zOK-lyJMkj9WkUyZSliimpMxpBoTRnCaMSQlSFFDESqVNlmSskMka3S13B2e_RvCBt3Z0U2fP4zQjGWWUkcnFFlfjrPcOFB-c7oU7cUr4TJu3_I82n2nzhfYUfFiCMHU4anDcNxpMA1K7qTKXVv934gc6rY6n</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Vishwakarma, Avinash</creator><creator>Chauhan, Nagendra S.</creator><creator>Bhardwaj, Ruchi</creator><creator>Johari, Kishor Kumar</creator><creator>Dhakate, Sanjay R.</creator><creator>Gahtori, Bhasker</creator><creator>Bathula, Sivaiah</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202010</creationdate><title>Compositional modulation is driven by aliovalent doping in n-type TiCoSb based half-Heuslers for tuning thermoelectric transport</title><author>Vishwakarma, Avinash ; Chauhan, Nagendra S. ; Bhardwaj, Ruchi ; Johari, Kishor Kumar ; Dhakate, Sanjay R. ; Gahtori, Bhasker ; Bathula, Sivaiah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-8480d2b527bda73372f0d246a463f6fdd715e06171366ddeda8e82ff4c53568d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carrier concentration</topic><topic>Carrier density</topic><topic>Carrier mobility</topic><topic>Crystallography</topic><topic>Doping</topic><topic>Electric arc melting</topic><topic>Electric power generation</topic><topic>Half-Heuslers</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Lattice thermal conductivity</topic><topic>Microstructural analysis</topic><topic>Microstructure</topic><topic>Niobium</topic><topic>Optimization</topic><topic>Plasma sintering</topic><topic>Power factor</topic><topic>Precipitates</topic><topic>Spark plasma sintering</topic><topic>Thermal conductivity</topic><topic>Thermoelectric</topic><topic>Thermoelectric materials</topic><topic>Thermoelectricity</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vishwakarma, Avinash</creatorcontrib><creatorcontrib>Chauhan, Nagendra S.</creatorcontrib><creatorcontrib>Bhardwaj, Ruchi</creatorcontrib><creatorcontrib>Johari, Kishor Kumar</creatorcontrib><creatorcontrib>Dhakate, Sanjay R.</creatorcontrib><creatorcontrib>Gahtori, Bhasker</creatorcontrib><creatorcontrib>Bathula, Sivaiah</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Intermetallics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vishwakarma, Avinash</au><au>Chauhan, Nagendra S.</au><au>Bhardwaj, Ruchi</au><au>Johari, Kishor Kumar</au><au>Dhakate, Sanjay R.</au><au>Gahtori, Bhasker</au><au>Bathula, Sivaiah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compositional modulation is driven by aliovalent doping in n-type TiCoSb based half-Heuslers for tuning thermoelectric transport</atitle><jtitle>Intermetallics</jtitle><date>2020-10</date><risdate>2020</risdate><volume>125</volume><spage>106914</spage><pages>106914-</pages><artnum>106914</artnum><issn>0966-9795</issn><eissn>1879-0216</eissn><abstract>The ternary intermetallic TiCoSb based half-Heusler (HH) alloys are prominent material exhibiting good p-type thermoelectric (TE) performance. In this work, we studied the implication of V and Nb as n-type aliovalent dopants on Ti crystallographic site of semiconducting TiCoSb based HH alloys for attaining higher TE performance in n-type counterparts. The carrier concentration optimization between semiconducting (Ti1−xVxCoSb) and semi-metallic regime (Ti1−xNbxCoSb) had resulted in maximum TE figure-of-merit (ZT) of 0.22 and 0.52 at 873 K for optimized Ti0.85V0.15CoSb and Ti0.85Nb0.15CoSb HH compositions, respectively. These substitutional alloys were synthesized using arc-melting and consolidated using spark plasma sintering, which resulted in biphasic microstructure with in-situ phase segregation of heterogeneously distributed Ti-rich precipitates at all length scales within the HH matrix, are examined by microstructural analysis using X-ray diffraction and electron microscopy. Interestingly, higher power factor and simultaneous reduction of thermal conductivity is observed in both the doping as a result of optimal carrier concentration and enhanced phonon scattering. However, Nb-doped alloys exhibit higher carrier mobility and more significant lattice thermal conductivity reduction, thus establishing n-type Ti1−xNbxCoSb HH alloys as an equally promising counterpart of p-type TiCoSb for mid-temperature TE power generation.
[Display omitted]
•Compositional modulation by aliovalent doping in TiCoSb.•Nb-doping is better than V-doping at Ti-site in TiCoSb.•Half-Heusler alloys Ti1−xNbxCoSb with high ZT ~0.52 at 873 K.•All scale hierarchical architecture reduces lattice thermal conductivity.•Optimal concentration and higher carrier mobility results in high ZT.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.intermet.2020.106914</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0966-9795 |
ispartof | Intermetallics, 2020-10, Vol.125, p.106914, Article 106914 |
issn | 0966-9795 1879-0216 |
language | eng |
recordid | cdi_proquest_journals_2450516160 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Carrier concentration Carrier density Carrier mobility Crystallography Doping Electric arc melting Electric power generation Half-Heuslers Heat conductivity Heat transfer Lattice thermal conductivity Microstructural analysis Microstructure Niobium Optimization Plasma sintering Power factor Precipitates Spark plasma sintering Thermal conductivity Thermoelectric Thermoelectric materials Thermoelectricity Titanium |
title | Compositional modulation is driven by aliovalent doping in n-type TiCoSb based half-Heuslers for tuning thermoelectric transport |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A04%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compositional%20modulation%20is%20driven%20by%20aliovalent%20doping%20in%20n-type%20TiCoSb%20based%20half-Heuslers%20for%20tuning%20thermoelectric%20transport&rft.jtitle=Intermetallics&rft.au=Vishwakarma,%20Avinash&rft.date=2020-10&rft.volume=125&rft.spage=106914&rft.pages=106914-&rft.artnum=106914&rft.issn=0966-9795&rft.eissn=1879-0216&rft_id=info:doi/10.1016/j.intermet.2020.106914&rft_dat=%3Cproquest_cross%3E2450516160%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450516160&rft_id=info:pmid/&rft_els_id=S0966979520304994&rfr_iscdi=true |