Compositional modulation is driven by aliovalent doping in n-type TiCoSb based half-Heuslers for tuning thermoelectric transport

The ternary intermetallic TiCoSb based half-Heusler (HH) alloys are prominent material exhibiting good p-type thermoelectric (TE) performance. In this work, we studied the implication of V and Nb as n-type aliovalent dopants on Ti crystallographic site of semiconducting TiCoSb based HH alloys for at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Intermetallics 2020-10, Vol.125, p.106914, Article 106914
Hauptverfasser: Vishwakarma, Avinash, Chauhan, Nagendra S., Bhardwaj, Ruchi, Johari, Kishor Kumar, Dhakate, Sanjay R., Gahtori, Bhasker, Bathula, Sivaiah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106914
container_title Intermetallics
container_volume 125
creator Vishwakarma, Avinash
Chauhan, Nagendra S.
Bhardwaj, Ruchi
Johari, Kishor Kumar
Dhakate, Sanjay R.
Gahtori, Bhasker
Bathula, Sivaiah
description The ternary intermetallic TiCoSb based half-Heusler (HH) alloys are prominent material exhibiting good p-type thermoelectric (TE) performance. In this work, we studied the implication of V and Nb as n-type aliovalent dopants on Ti crystallographic site of semiconducting TiCoSb based HH alloys for attaining higher TE performance in n-type counterparts. The carrier concentration optimization between semiconducting (Ti1−xVxCoSb) and semi-metallic regime (Ti1−xNbxCoSb) had resulted in maximum TE figure-of-merit (ZT) of 0.22 and 0.52 at 873 K for optimized Ti0.85V0.15CoSb and Ti0.85Nb0.15CoSb HH compositions, respectively. These substitutional alloys were synthesized using arc-melting and consolidated using spark plasma sintering, which resulted in biphasic microstructure with in-situ phase segregation of heterogeneously distributed Ti-rich precipitates at all length scales within the HH matrix, are examined by microstructural analysis using X-ray diffraction and electron microscopy. Interestingly, higher power factor and simultaneous reduction of thermal conductivity is observed in both the doping as a result of optimal carrier concentration and enhanced phonon scattering. However, Nb-doped alloys exhibit higher carrier mobility and more significant lattice thermal conductivity reduction, thus establishing n-type Ti1−xNbxCoSb HH alloys as an equally promising counterpart of p-type TiCoSb for mid-temperature TE power generation. [Display omitted] •Compositional modulation by aliovalent doping in TiCoSb.•Nb-doping is better than V-doping at Ti-site in TiCoSb.•Half-Heusler alloys Ti1−xNbxCoSb with high ZT ~0.52 at 873 K.•All scale hierarchical architecture reduces lattice thermal conductivity.•Optimal concentration and higher carrier mobility results in high ZT.
doi_str_mv 10.1016/j.intermet.2020.106914
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450516160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0966979520304994</els_id><sourcerecordid>2450516160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-8480d2b527bda73372f0d246a463f6fdd715e06171366ddeda8e82ff4c53568d3</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-BQl47pr0T9relKKusODB9RzSZuKmtElN0oW9-dFtqZ49DW94b5j3Q-iWkg0llN23G20CuB7CJibxvGQlTc_QihZ5GZGYsnO0IiVjUZmX2SW68r4lhOYkyVbou7L9YL0O2hrR4d7KsROzwNpj6fQRDK5PWHTaHkUHJmBpB20-sTbYROE0AN7ryr7XuBYeJD6ITkVbGH0HzmNlHQ6jmf3hML1ooYMmON3g4ITxg3XhGl0o0Xm4-Z1r9PH8tK-20e7t5bV63EVNSliIirQgMq6zOK-lyJMkj9WkUyZSliimpMxpBoTRnCaMSQlSFFDESqVNlmSskMka3S13B2e_RvCBt3Z0U2fP4zQjGWWUkcnFFlfjrPcOFB-c7oU7cUr4TJu3_I82n2nzhfYUfFiCMHU4anDcNxpMA1K7qTKXVv934gc6rY6n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450516160</pqid></control><display><type>article</type><title>Compositional modulation is driven by aliovalent doping in n-type TiCoSb based half-Heuslers for tuning thermoelectric transport</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Vishwakarma, Avinash ; Chauhan, Nagendra S. ; Bhardwaj, Ruchi ; Johari, Kishor Kumar ; Dhakate, Sanjay R. ; Gahtori, Bhasker ; Bathula, Sivaiah</creator><creatorcontrib>Vishwakarma, Avinash ; Chauhan, Nagendra S. ; Bhardwaj, Ruchi ; Johari, Kishor Kumar ; Dhakate, Sanjay R. ; Gahtori, Bhasker ; Bathula, Sivaiah</creatorcontrib><description>The ternary intermetallic TiCoSb based half-Heusler (HH) alloys are prominent material exhibiting good p-type thermoelectric (TE) performance. In this work, we studied the implication of V and Nb as n-type aliovalent dopants on Ti crystallographic site of semiconducting TiCoSb based HH alloys for attaining higher TE performance in n-type counterparts. The carrier concentration optimization between semiconducting (Ti1−xVxCoSb) and semi-metallic regime (Ti1−xNbxCoSb) had resulted in maximum TE figure-of-merit (ZT) of 0.22 and 0.52 at 873 K for optimized Ti0.85V0.15CoSb and Ti0.85Nb0.15CoSb HH compositions, respectively. These substitutional alloys were synthesized using arc-melting and consolidated using spark plasma sintering, which resulted in biphasic microstructure with in-situ phase segregation of heterogeneously distributed Ti-rich precipitates at all length scales within the HH matrix, are examined by microstructural analysis using X-ray diffraction and electron microscopy. Interestingly, higher power factor and simultaneous reduction of thermal conductivity is observed in both the doping as a result of optimal carrier concentration and enhanced phonon scattering. However, Nb-doped alloys exhibit higher carrier mobility and more significant lattice thermal conductivity reduction, thus establishing n-type Ti1−xNbxCoSb HH alloys as an equally promising counterpart of p-type TiCoSb for mid-temperature TE power generation. [Display omitted] •Compositional modulation by aliovalent doping in TiCoSb.•Nb-doping is better than V-doping at Ti-site in TiCoSb.•Half-Heusler alloys Ti1−xNbxCoSb with high ZT ~0.52 at 873 K.•All scale hierarchical architecture reduces lattice thermal conductivity.•Optimal concentration and higher carrier mobility results in high ZT.</description><identifier>ISSN: 0966-9795</identifier><identifier>EISSN: 1879-0216</identifier><identifier>DOI: 10.1016/j.intermet.2020.106914</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Carrier concentration ; Carrier density ; Carrier mobility ; Crystallography ; Doping ; Electric arc melting ; Electric power generation ; Half-Heuslers ; Heat conductivity ; Heat transfer ; Lattice thermal conductivity ; Microstructural analysis ; Microstructure ; Niobium ; Optimization ; Plasma sintering ; Power factor ; Precipitates ; Spark plasma sintering ; Thermal conductivity ; Thermoelectric ; Thermoelectric materials ; Thermoelectricity ; Titanium</subject><ispartof>Intermetallics, 2020-10, Vol.125, p.106914, Article 106914</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-8480d2b527bda73372f0d246a463f6fdd715e06171366ddeda8e82ff4c53568d3</citedby><cites>FETCH-LOGICAL-c406t-8480d2b527bda73372f0d246a463f6fdd715e06171366ddeda8e82ff4c53568d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.intermet.2020.106914$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Vishwakarma, Avinash</creatorcontrib><creatorcontrib>Chauhan, Nagendra S.</creatorcontrib><creatorcontrib>Bhardwaj, Ruchi</creatorcontrib><creatorcontrib>Johari, Kishor Kumar</creatorcontrib><creatorcontrib>Dhakate, Sanjay R.</creatorcontrib><creatorcontrib>Gahtori, Bhasker</creatorcontrib><creatorcontrib>Bathula, Sivaiah</creatorcontrib><title>Compositional modulation is driven by aliovalent doping in n-type TiCoSb based half-Heuslers for tuning thermoelectric transport</title><title>Intermetallics</title><description>The ternary intermetallic TiCoSb based half-Heusler (HH) alloys are prominent material exhibiting good p-type thermoelectric (TE) performance. In this work, we studied the implication of V and Nb as n-type aliovalent dopants on Ti crystallographic site of semiconducting TiCoSb based HH alloys for attaining higher TE performance in n-type counterparts. The carrier concentration optimization between semiconducting (Ti1−xVxCoSb) and semi-metallic regime (Ti1−xNbxCoSb) had resulted in maximum TE figure-of-merit (ZT) of 0.22 and 0.52 at 873 K for optimized Ti0.85V0.15CoSb and Ti0.85Nb0.15CoSb HH compositions, respectively. These substitutional alloys were synthesized using arc-melting and consolidated using spark plasma sintering, which resulted in biphasic microstructure with in-situ phase segregation of heterogeneously distributed Ti-rich precipitates at all length scales within the HH matrix, are examined by microstructural analysis using X-ray diffraction and electron microscopy. Interestingly, higher power factor and simultaneous reduction of thermal conductivity is observed in both the doping as a result of optimal carrier concentration and enhanced phonon scattering. However, Nb-doped alloys exhibit higher carrier mobility and more significant lattice thermal conductivity reduction, thus establishing n-type Ti1−xNbxCoSb HH alloys as an equally promising counterpart of p-type TiCoSb for mid-temperature TE power generation. [Display omitted] •Compositional modulation by aliovalent doping in TiCoSb.•Nb-doping is better than V-doping at Ti-site in TiCoSb.•Half-Heusler alloys Ti1−xNbxCoSb with high ZT ~0.52 at 873 K.•All scale hierarchical architecture reduces lattice thermal conductivity.•Optimal concentration and higher carrier mobility results in high ZT.</description><subject>Carrier concentration</subject><subject>Carrier density</subject><subject>Carrier mobility</subject><subject>Crystallography</subject><subject>Doping</subject><subject>Electric arc melting</subject><subject>Electric power generation</subject><subject>Half-Heuslers</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Lattice thermal conductivity</subject><subject>Microstructural analysis</subject><subject>Microstructure</subject><subject>Niobium</subject><subject>Optimization</subject><subject>Plasma sintering</subject><subject>Power factor</subject><subject>Precipitates</subject><subject>Spark plasma sintering</subject><subject>Thermal conductivity</subject><subject>Thermoelectric</subject><subject>Thermoelectric materials</subject><subject>Thermoelectricity</subject><subject>Titanium</subject><issn>0966-9795</issn><issn>1879-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-BQl47pr0T9relKKusODB9RzSZuKmtElN0oW9-dFtqZ49DW94b5j3Q-iWkg0llN23G20CuB7CJibxvGQlTc_QihZ5GZGYsnO0IiVjUZmX2SW68r4lhOYkyVbou7L9YL0O2hrR4d7KsROzwNpj6fQRDK5PWHTaHkUHJmBpB20-sTbYROE0AN7ryr7XuBYeJD6ITkVbGH0HzmNlHQ6jmf3hML1ooYMmON3g4ITxg3XhGl0o0Xm4-Z1r9PH8tK-20e7t5bV63EVNSliIirQgMq6zOK-lyJMkj9WkUyZSliimpMxpBoTRnCaMSQlSFFDESqVNlmSskMka3S13B2e_RvCBt3Z0U2fP4zQjGWWUkcnFFlfjrPcOFB-c7oU7cUr4TJu3_I82n2nzhfYUfFiCMHU4anDcNxpMA1K7qTKXVv934gc6rY6n</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Vishwakarma, Avinash</creator><creator>Chauhan, Nagendra S.</creator><creator>Bhardwaj, Ruchi</creator><creator>Johari, Kishor Kumar</creator><creator>Dhakate, Sanjay R.</creator><creator>Gahtori, Bhasker</creator><creator>Bathula, Sivaiah</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202010</creationdate><title>Compositional modulation is driven by aliovalent doping in n-type TiCoSb based half-Heuslers for tuning thermoelectric transport</title><author>Vishwakarma, Avinash ; Chauhan, Nagendra S. ; Bhardwaj, Ruchi ; Johari, Kishor Kumar ; Dhakate, Sanjay R. ; Gahtori, Bhasker ; Bathula, Sivaiah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-8480d2b527bda73372f0d246a463f6fdd715e06171366ddeda8e82ff4c53568d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carrier concentration</topic><topic>Carrier density</topic><topic>Carrier mobility</topic><topic>Crystallography</topic><topic>Doping</topic><topic>Electric arc melting</topic><topic>Electric power generation</topic><topic>Half-Heuslers</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Lattice thermal conductivity</topic><topic>Microstructural analysis</topic><topic>Microstructure</topic><topic>Niobium</topic><topic>Optimization</topic><topic>Plasma sintering</topic><topic>Power factor</topic><topic>Precipitates</topic><topic>Spark plasma sintering</topic><topic>Thermal conductivity</topic><topic>Thermoelectric</topic><topic>Thermoelectric materials</topic><topic>Thermoelectricity</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vishwakarma, Avinash</creatorcontrib><creatorcontrib>Chauhan, Nagendra S.</creatorcontrib><creatorcontrib>Bhardwaj, Ruchi</creatorcontrib><creatorcontrib>Johari, Kishor Kumar</creatorcontrib><creatorcontrib>Dhakate, Sanjay R.</creatorcontrib><creatorcontrib>Gahtori, Bhasker</creatorcontrib><creatorcontrib>Bathula, Sivaiah</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Intermetallics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vishwakarma, Avinash</au><au>Chauhan, Nagendra S.</au><au>Bhardwaj, Ruchi</au><au>Johari, Kishor Kumar</au><au>Dhakate, Sanjay R.</au><au>Gahtori, Bhasker</au><au>Bathula, Sivaiah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compositional modulation is driven by aliovalent doping in n-type TiCoSb based half-Heuslers for tuning thermoelectric transport</atitle><jtitle>Intermetallics</jtitle><date>2020-10</date><risdate>2020</risdate><volume>125</volume><spage>106914</spage><pages>106914-</pages><artnum>106914</artnum><issn>0966-9795</issn><eissn>1879-0216</eissn><abstract>The ternary intermetallic TiCoSb based half-Heusler (HH) alloys are prominent material exhibiting good p-type thermoelectric (TE) performance. In this work, we studied the implication of V and Nb as n-type aliovalent dopants on Ti crystallographic site of semiconducting TiCoSb based HH alloys for attaining higher TE performance in n-type counterparts. The carrier concentration optimization between semiconducting (Ti1−xVxCoSb) and semi-metallic regime (Ti1−xNbxCoSb) had resulted in maximum TE figure-of-merit (ZT) of 0.22 and 0.52 at 873 K for optimized Ti0.85V0.15CoSb and Ti0.85Nb0.15CoSb HH compositions, respectively. These substitutional alloys were synthesized using arc-melting and consolidated using spark plasma sintering, which resulted in biphasic microstructure with in-situ phase segregation of heterogeneously distributed Ti-rich precipitates at all length scales within the HH matrix, are examined by microstructural analysis using X-ray diffraction and electron microscopy. Interestingly, higher power factor and simultaneous reduction of thermal conductivity is observed in both the doping as a result of optimal carrier concentration and enhanced phonon scattering. However, Nb-doped alloys exhibit higher carrier mobility and more significant lattice thermal conductivity reduction, thus establishing n-type Ti1−xNbxCoSb HH alloys as an equally promising counterpart of p-type TiCoSb for mid-temperature TE power generation. [Display omitted] •Compositional modulation by aliovalent doping in TiCoSb.•Nb-doping is better than V-doping at Ti-site in TiCoSb.•Half-Heusler alloys Ti1−xNbxCoSb with high ZT ~0.52 at 873 K.•All scale hierarchical architecture reduces lattice thermal conductivity.•Optimal concentration and higher carrier mobility results in high ZT.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.intermet.2020.106914</doi></addata></record>
fulltext fulltext
identifier ISSN: 0966-9795
ispartof Intermetallics, 2020-10, Vol.125, p.106914, Article 106914
issn 0966-9795
1879-0216
language eng
recordid cdi_proquest_journals_2450516160
source ScienceDirect Journals (5 years ago - present)
subjects Carrier concentration
Carrier density
Carrier mobility
Crystallography
Doping
Electric arc melting
Electric power generation
Half-Heuslers
Heat conductivity
Heat transfer
Lattice thermal conductivity
Microstructural analysis
Microstructure
Niobium
Optimization
Plasma sintering
Power factor
Precipitates
Spark plasma sintering
Thermal conductivity
Thermoelectric
Thermoelectric materials
Thermoelectricity
Titanium
title Compositional modulation is driven by aliovalent doping in n-type TiCoSb based half-Heuslers for tuning thermoelectric transport
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A04%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compositional%20modulation%20is%20driven%20by%20aliovalent%20doping%20in%20n-type%20TiCoSb%20based%20half-Heuslers%20for%20tuning%20thermoelectric%20transport&rft.jtitle=Intermetallics&rft.au=Vishwakarma,%20Avinash&rft.date=2020-10&rft.volume=125&rft.spage=106914&rft.pages=106914-&rft.artnum=106914&rft.issn=0966-9795&rft.eissn=1879-0216&rft_id=info:doi/10.1016/j.intermet.2020.106914&rft_dat=%3Cproquest_cross%3E2450516160%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450516160&rft_id=info:pmid/&rft_els_id=S0966979520304994&rfr_iscdi=true