Understanding nanomechanical and surface ellipsometry of optical F-doped SnO2 thin films by in-line APCVD

In this paper, a production-type chemical vapour deposition (CVD) is utilized to deposit fluorine doped tin oxide thin films of different thicknesses and dopant levels. Deposited films showed a preferred orientation along the (200) plane of a tetragonal structure due to the formation of halogen rich...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2020-11, Vol.126 (11), Article 840
Hauptverfasser: Afzaal, Mohammad, Yates, Heather M., Al-Ahmed, Amir, Ul-Hamid, Anwar, Salhi, Billel, Ali, Murad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a production-type chemical vapour deposition (CVD) is utilized to deposit fluorine doped tin oxide thin films of different thicknesses and dopant levels. Deposited films showed a preferred orientation along the (200) plane of a tetragonal structure due to the formation of halogen rich polar molecules during the process. A holistic approach studying elastic modulus and hardness of resulting films by a high-throughput atmospheric-pressure CVD process is described. The hardness values determined lie between 8 and 20 GPa. For a given load, the modulus generally increased slightly with the thickness. The average elastic recovery for the coatings was found to be between 45 and 50%. Refractive index and thickness values derived from the fitted ellipsometry data were in excellent agreement with independent calculations from transmission and reflection data.
ISSN:0947-8396
1432-0630
DOI:10.1007/s00339-020-04033-z