Development of Carbon Nanofibers/Pt Nanocomposites for Fuel Cell Application

Carbon nanofibers (CNFs) were prepared via the deposition of acetylene gas on bimetallic catalyst (Fe–Co) supported on kaolin in a catalytic chemical vapour reactor. Carbon nanofibers/Pt nanocomposite (Pt catalyst) was synthesized by immobilization of potassium tetrachloroplatinate (IV) (K 2 PtCl 4...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arabian journal for science and engineering (2011) 2020-09, Vol.45 (9), p.7329-7346
Hauptverfasser: Mudi, K. Y., Abdulkareem, A. S., Kovo, A. S., Azeez, O. S., Tijani, J. O., Eterigho, E. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7346
container_issue 9
container_start_page 7329
container_title Arabian journal for science and engineering (2011)
container_volume 45
creator Mudi, K. Y.
Abdulkareem, A. S.
Kovo, A. S.
Azeez, O. S.
Tijani, J. O.
Eterigho, E. J.
description Carbon nanofibers (CNFs) were prepared via the deposition of acetylene gas on bimetallic catalyst (Fe–Co) supported on kaolin in a catalytic chemical vapour reactor. Carbon nanofibers/Pt nanocomposite (Pt catalyst) was synthesized by immobilization of potassium tetrachloroplatinate (IV) (K 2 PtCl 4 ) onto the carbon nanofibers (CNFs) by a wet impregnation method. The effects of mass of carbon nanofibers (CNFs) (0.25–0.30 g) and deposition time (150–180 min) on the percentage of platinum (Pt) deposited on the nanofiber were investigated. The developed CNFs/Pt was characterized using different analytical tools such as HRSEM, EDS, HRTEM, BET, TGA, XRD, XPS and cyclic voltammetry (CV). The XRD patterns revealed the crystallite size of the Pt catalyst ranged between 5.54 and 6.69 nm, and the size decreased with increasing mass of support (CNFs). The HRTEM/HRSEM analysis of the CNFs/Pt catalyst showed that the dispersion and distribution pattern and the shape of the catalyst changes as the amount of CNFs increased from 0.25 to 0.3 g. However, deposition time did not influence the crystalline nature of the catalysts. XPS analysis demonstrated the existence of different oxidation states of Pt particles on the surface of CNFs. The CV analysis revealed that CNFs/Pt catalyst supports the oxygen reduction reaction and hydrogen oxidation reaction in the fuel cell. The platinum loading of 0.002–0.004 mg pt /cm 2 in the fabricated electrodes using the developed CNFs/Pt nanocomposite was compared well with other electrodes (fabricated with other support materials) such as carbon black, carbon nanotubes, aerogel and titanium.
doi_str_mv 10.1007/s13369-020-04498-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450412379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450412379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-50d56e0457d71cf0ef0d999c64678960e760894f8359181821a6d85fb88de9743</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouKz7BzwVPEdnmu_jUl0VFvWg4C30I5FKt6lJV_DfW7eCN08zA8_7DjyEnCNcIoC6SsiYNBRyoMC50ZQdkUWOBinPNR4fdkaFVK-nZJVSWwHXzAhEtiDba_fpujDsXD9mwWdFGavQZw9lH3xbuZiunsbDVYfdEFI7upT5ELPN3nVZ4bouWw9D19bl2Ib-jJz4sktu9TuX5GVz81zc0e3j7X2x3tKaoRmpgEZIB1yoRmHtwXlojDG15FJpI8EpCdpwr5kwqFHnWMpGC19p3TijOFuSi7l3iOFj79Jo38M-9tNLm3MBHHOmzETlM1XHkFJ03g6x3ZXxyyLYH3F2FmcncfYgzrIpxOZQmuD-zcW_6n9S312gbyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450412379</pqid></control><display><type>article</type><title>Development of Carbon Nanofibers/Pt Nanocomposites for Fuel Cell Application</title><source>Springer Nature - Complete Springer Journals</source><creator>Mudi, K. Y. ; Abdulkareem, A. S. ; Kovo, A. S. ; Azeez, O. S. ; Tijani, J. O. ; Eterigho, E. J.</creator><creatorcontrib>Mudi, K. Y. ; Abdulkareem, A. S. ; Kovo, A. S. ; Azeez, O. S. ; Tijani, J. O. ; Eterigho, E. J.</creatorcontrib><description>Carbon nanofibers (CNFs) were prepared via the deposition of acetylene gas on bimetallic catalyst (Fe–Co) supported on kaolin in a catalytic chemical vapour reactor. Carbon nanofibers/Pt nanocomposite (Pt catalyst) was synthesized by immobilization of potassium tetrachloroplatinate (IV) (K 2 PtCl 4 ) onto the carbon nanofibers (CNFs) by a wet impregnation method. The effects of mass of carbon nanofibers (CNFs) (0.25–0.30 g) and deposition time (150–180 min) on the percentage of platinum (Pt) deposited on the nanofiber were investigated. The developed CNFs/Pt was characterized using different analytical tools such as HRSEM, EDS, HRTEM, BET, TGA, XRD, XPS and cyclic voltammetry (CV). The XRD patterns revealed the crystallite size of the Pt catalyst ranged between 5.54 and 6.69 nm, and the size decreased with increasing mass of support (CNFs). The HRTEM/HRSEM analysis of the CNFs/Pt catalyst showed that the dispersion and distribution pattern and the shape of the catalyst changes as the amount of CNFs increased from 0.25 to 0.3 g. However, deposition time did not influence the crystalline nature of the catalysts. XPS analysis demonstrated the existence of different oxidation states of Pt particles on the surface of CNFs. The CV analysis revealed that CNFs/Pt catalyst supports the oxygen reduction reaction and hydrogen oxidation reaction in the fuel cell. The platinum loading of 0.002–0.004 mg pt /cm 2 in the fabricated electrodes using the developed CNFs/Pt nanocomposite was compared well with other electrodes (fabricated with other support materials) such as carbon black, carbon nanotubes, aerogel and titanium.</description><identifier>ISSN: 2193-567X</identifier><identifier>ISSN: 1319-8025</identifier><identifier>EISSN: 2191-4281</identifier><identifier>DOI: 10.1007/s13369-020-04498-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acetylene ; Aerogels ; Bimetals ; Carbon black ; Carbon fibers ; Carbon nanotubes ; Catalysts ; Chemical synthesis ; Crystallites ; Deposition ; Electrodes ; Engineering ; Fuel cells ; Humanities and Social Sciences ; Ions ; Kaolin ; multidisciplinary ; Nanocomposites ; Nanofibers ; Nuclear fuels ; Oxidation ; Oxygen reduction reactions ; Platinum ; Research Article-Chemical Engineering ; Science ; X ray photoelectron spectroscopy</subject><ispartof>Arabian journal for science and engineering (2011), 2020-09, Vol.45 (9), p.7329-7346</ispartof><rights>King Fahd University of Petroleum &amp; Minerals 2020</rights><rights>King Fahd University of Petroleum &amp; Minerals 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-50d56e0457d71cf0ef0d999c64678960e760894f8359181821a6d85fb88de9743</citedby><cites>FETCH-LOGICAL-c319t-50d56e0457d71cf0ef0d999c64678960e760894f8359181821a6d85fb88de9743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13369-020-04498-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13369-020-04498-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Mudi, K. Y.</creatorcontrib><creatorcontrib>Abdulkareem, A. S.</creatorcontrib><creatorcontrib>Kovo, A. S.</creatorcontrib><creatorcontrib>Azeez, O. S.</creatorcontrib><creatorcontrib>Tijani, J. O.</creatorcontrib><creatorcontrib>Eterigho, E. J.</creatorcontrib><title>Development of Carbon Nanofibers/Pt Nanocomposites for Fuel Cell Application</title><title>Arabian journal for science and engineering (2011)</title><addtitle>Arab J Sci Eng</addtitle><description>Carbon nanofibers (CNFs) were prepared via the deposition of acetylene gas on bimetallic catalyst (Fe–Co) supported on kaolin in a catalytic chemical vapour reactor. Carbon nanofibers/Pt nanocomposite (Pt catalyst) was synthesized by immobilization of potassium tetrachloroplatinate (IV) (K 2 PtCl 4 ) onto the carbon nanofibers (CNFs) by a wet impregnation method. The effects of mass of carbon nanofibers (CNFs) (0.25–0.30 g) and deposition time (150–180 min) on the percentage of platinum (Pt) deposited on the nanofiber were investigated. The developed CNFs/Pt was characterized using different analytical tools such as HRSEM, EDS, HRTEM, BET, TGA, XRD, XPS and cyclic voltammetry (CV). The XRD patterns revealed the crystallite size of the Pt catalyst ranged between 5.54 and 6.69 nm, and the size decreased with increasing mass of support (CNFs). The HRTEM/HRSEM analysis of the CNFs/Pt catalyst showed that the dispersion and distribution pattern and the shape of the catalyst changes as the amount of CNFs increased from 0.25 to 0.3 g. However, deposition time did not influence the crystalline nature of the catalysts. XPS analysis demonstrated the existence of different oxidation states of Pt particles on the surface of CNFs. The CV analysis revealed that CNFs/Pt catalyst supports the oxygen reduction reaction and hydrogen oxidation reaction in the fuel cell. The platinum loading of 0.002–0.004 mg pt /cm 2 in the fabricated electrodes using the developed CNFs/Pt nanocomposite was compared well with other electrodes (fabricated with other support materials) such as carbon black, carbon nanotubes, aerogel and titanium.</description><subject>Acetylene</subject><subject>Aerogels</subject><subject>Bimetals</subject><subject>Carbon black</subject><subject>Carbon fibers</subject><subject>Carbon nanotubes</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Crystallites</subject><subject>Deposition</subject><subject>Electrodes</subject><subject>Engineering</subject><subject>Fuel cells</subject><subject>Humanities and Social Sciences</subject><subject>Ions</subject><subject>Kaolin</subject><subject>multidisciplinary</subject><subject>Nanocomposites</subject><subject>Nanofibers</subject><subject>Nuclear fuels</subject><subject>Oxidation</subject><subject>Oxygen reduction reactions</subject><subject>Platinum</subject><subject>Research Article-Chemical Engineering</subject><subject>Science</subject><subject>X ray photoelectron spectroscopy</subject><issn>2193-567X</issn><issn>1319-8025</issn><issn>2191-4281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouKz7BzwVPEdnmu_jUl0VFvWg4C30I5FKt6lJV_DfW7eCN08zA8_7DjyEnCNcIoC6SsiYNBRyoMC50ZQdkUWOBinPNR4fdkaFVK-nZJVSWwHXzAhEtiDba_fpujDsXD9mwWdFGavQZw9lH3xbuZiunsbDVYfdEFI7upT5ELPN3nVZ4bouWw9D19bl2Ib-jJz4sktu9TuX5GVz81zc0e3j7X2x3tKaoRmpgEZIB1yoRmHtwXlojDG15FJpI8EpCdpwr5kwqFHnWMpGC19p3TijOFuSi7l3iOFj79Jo38M-9tNLm3MBHHOmzETlM1XHkFJ03g6x3ZXxyyLYH3F2FmcncfYgzrIpxOZQmuD-zcW_6n9S312gbyA</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Mudi, K. Y.</creator><creator>Abdulkareem, A. S.</creator><creator>Kovo, A. S.</creator><creator>Azeez, O. S.</creator><creator>Tijani, J. O.</creator><creator>Eterigho, E. J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200901</creationdate><title>Development of Carbon Nanofibers/Pt Nanocomposites for Fuel Cell Application</title><author>Mudi, K. Y. ; Abdulkareem, A. S. ; Kovo, A. S. ; Azeez, O. S. ; Tijani, J. O. ; Eterigho, E. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-50d56e0457d71cf0ef0d999c64678960e760894f8359181821a6d85fb88de9743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetylene</topic><topic>Aerogels</topic><topic>Bimetals</topic><topic>Carbon black</topic><topic>Carbon fibers</topic><topic>Carbon nanotubes</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Crystallites</topic><topic>Deposition</topic><topic>Electrodes</topic><topic>Engineering</topic><topic>Fuel cells</topic><topic>Humanities and Social Sciences</topic><topic>Ions</topic><topic>Kaolin</topic><topic>multidisciplinary</topic><topic>Nanocomposites</topic><topic>Nanofibers</topic><topic>Nuclear fuels</topic><topic>Oxidation</topic><topic>Oxygen reduction reactions</topic><topic>Platinum</topic><topic>Research Article-Chemical Engineering</topic><topic>Science</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mudi, K. Y.</creatorcontrib><creatorcontrib>Abdulkareem, A. S.</creatorcontrib><creatorcontrib>Kovo, A. S.</creatorcontrib><creatorcontrib>Azeez, O. S.</creatorcontrib><creatorcontrib>Tijani, J. O.</creatorcontrib><creatorcontrib>Eterigho, E. J.</creatorcontrib><collection>CrossRef</collection><jtitle>Arabian journal for science and engineering (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mudi, K. Y.</au><au>Abdulkareem, A. S.</au><au>Kovo, A. S.</au><au>Azeez, O. S.</au><au>Tijani, J. O.</au><au>Eterigho, E. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Carbon Nanofibers/Pt Nanocomposites for Fuel Cell Application</atitle><jtitle>Arabian journal for science and engineering (2011)</jtitle><stitle>Arab J Sci Eng</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>45</volume><issue>9</issue><spage>7329</spage><epage>7346</epage><pages>7329-7346</pages><issn>2193-567X</issn><issn>1319-8025</issn><eissn>2191-4281</eissn><abstract>Carbon nanofibers (CNFs) were prepared via the deposition of acetylene gas on bimetallic catalyst (Fe–Co) supported on kaolin in a catalytic chemical vapour reactor. Carbon nanofibers/Pt nanocomposite (Pt catalyst) was synthesized by immobilization of potassium tetrachloroplatinate (IV) (K 2 PtCl 4 ) onto the carbon nanofibers (CNFs) by a wet impregnation method. The effects of mass of carbon nanofibers (CNFs) (0.25–0.30 g) and deposition time (150–180 min) on the percentage of platinum (Pt) deposited on the nanofiber were investigated. The developed CNFs/Pt was characterized using different analytical tools such as HRSEM, EDS, HRTEM, BET, TGA, XRD, XPS and cyclic voltammetry (CV). The XRD patterns revealed the crystallite size of the Pt catalyst ranged between 5.54 and 6.69 nm, and the size decreased with increasing mass of support (CNFs). The HRTEM/HRSEM analysis of the CNFs/Pt catalyst showed that the dispersion and distribution pattern and the shape of the catalyst changes as the amount of CNFs increased from 0.25 to 0.3 g. However, deposition time did not influence the crystalline nature of the catalysts. XPS analysis demonstrated the existence of different oxidation states of Pt particles on the surface of CNFs. The CV analysis revealed that CNFs/Pt catalyst supports the oxygen reduction reaction and hydrogen oxidation reaction in the fuel cell. The platinum loading of 0.002–0.004 mg pt /cm 2 in the fabricated electrodes using the developed CNFs/Pt nanocomposite was compared well with other electrodes (fabricated with other support materials) such as carbon black, carbon nanotubes, aerogel and titanium.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13369-020-04498-3</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2193-567X
ispartof Arabian journal for science and engineering (2011), 2020-09, Vol.45 (9), p.7329-7346
issn 2193-567X
1319-8025
2191-4281
language eng
recordid cdi_proquest_journals_2450412379
source Springer Nature - Complete Springer Journals
subjects Acetylene
Aerogels
Bimetals
Carbon black
Carbon fibers
Carbon nanotubes
Catalysts
Chemical synthesis
Crystallites
Deposition
Electrodes
Engineering
Fuel cells
Humanities and Social Sciences
Ions
Kaolin
multidisciplinary
Nanocomposites
Nanofibers
Nuclear fuels
Oxidation
Oxygen reduction reactions
Platinum
Research Article-Chemical Engineering
Science
X ray photoelectron spectroscopy
title Development of Carbon Nanofibers/Pt Nanocomposites for Fuel Cell Application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A58%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Carbon%20Nanofibers/Pt%20Nanocomposites%20for%20Fuel%20Cell%20Application&rft.jtitle=Arabian%20journal%20for%20science%20and%20engineering%20(2011)&rft.au=Mudi,%20K.%20Y.&rft.date=2020-09-01&rft.volume=45&rft.issue=9&rft.spage=7329&rft.epage=7346&rft.pages=7329-7346&rft.issn=2193-567X&rft.eissn=2191-4281&rft_id=info:doi/10.1007/s13369-020-04498-3&rft_dat=%3Cproquest_cross%3E2450412379%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450412379&rft_id=info:pmid/&rfr_iscdi=true