Development of Carbon Nanofibers/Pt Nanocomposites for Fuel Cell Application
Carbon nanofibers (CNFs) were prepared via the deposition of acetylene gas on bimetallic catalyst (Fe–Co) supported on kaolin in a catalytic chemical vapour reactor. Carbon nanofibers/Pt nanocomposite (Pt catalyst) was synthesized by immobilization of potassium tetrachloroplatinate (IV) (K 2 PtCl 4...
Gespeichert in:
Veröffentlicht in: | Arabian journal for science and engineering (2011) 2020-09, Vol.45 (9), p.7329-7346 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7346 |
---|---|
container_issue | 9 |
container_start_page | 7329 |
container_title | Arabian journal for science and engineering (2011) |
container_volume | 45 |
creator | Mudi, K. Y. Abdulkareem, A. S. Kovo, A. S. Azeez, O. S. Tijani, J. O. Eterigho, E. J. |
description | Carbon nanofibers (CNFs) were prepared via the deposition of acetylene gas on bimetallic catalyst (Fe–Co) supported on kaolin in a catalytic chemical vapour reactor. Carbon nanofibers/Pt nanocomposite (Pt catalyst) was synthesized by immobilization of potassium tetrachloroplatinate (IV) (K
2
PtCl
4
) onto the carbon nanofibers (CNFs) by a wet impregnation method. The effects of mass of carbon nanofibers (CNFs) (0.25–0.30 g) and deposition time (150–180 min) on the percentage of platinum (Pt) deposited on the nanofiber were investigated. The developed CNFs/Pt was characterized using different analytical tools such as HRSEM, EDS, HRTEM, BET, TGA, XRD, XPS and cyclic voltammetry (CV). The XRD patterns revealed the crystallite size of the Pt catalyst ranged between 5.54 and 6.69 nm, and the size decreased with increasing mass of support (CNFs). The HRTEM/HRSEM analysis of the CNFs/Pt catalyst showed that the dispersion and distribution pattern and the shape of the catalyst changes as the amount of CNFs increased from 0.25 to 0.3 g. However, deposition time did not influence the crystalline nature of the catalysts. XPS analysis demonstrated the existence of different oxidation states of Pt particles on the surface of CNFs. The CV analysis revealed that CNFs/Pt catalyst supports the oxygen reduction reaction and hydrogen oxidation reaction in the fuel cell. The platinum loading of 0.002–0.004 mg
pt
/cm
2
in the fabricated electrodes using the developed CNFs/Pt nanocomposite was compared well with other electrodes (fabricated with other support materials) such as carbon black, carbon nanotubes, aerogel and titanium. |
doi_str_mv | 10.1007/s13369-020-04498-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450412379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450412379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-50d56e0457d71cf0ef0d999c64678960e760894f8359181821a6d85fb88de9743</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouKz7BzwVPEdnmu_jUl0VFvWg4C30I5FKt6lJV_DfW7eCN08zA8_7DjyEnCNcIoC6SsiYNBRyoMC50ZQdkUWOBinPNR4fdkaFVK-nZJVSWwHXzAhEtiDba_fpujDsXD9mwWdFGavQZw9lH3xbuZiunsbDVYfdEFI7upT5ELPN3nVZ4bouWw9D19bl2Ib-jJz4sktu9TuX5GVz81zc0e3j7X2x3tKaoRmpgEZIB1yoRmHtwXlojDG15FJpI8EpCdpwr5kwqFHnWMpGC19p3TijOFuSi7l3iOFj79Jo38M-9tNLm3MBHHOmzETlM1XHkFJ03g6x3ZXxyyLYH3F2FmcncfYgzrIpxOZQmuD-zcW_6n9S312gbyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450412379</pqid></control><display><type>article</type><title>Development of Carbon Nanofibers/Pt Nanocomposites for Fuel Cell Application</title><source>Springer Nature - Complete Springer Journals</source><creator>Mudi, K. Y. ; Abdulkareem, A. S. ; Kovo, A. S. ; Azeez, O. S. ; Tijani, J. O. ; Eterigho, E. J.</creator><creatorcontrib>Mudi, K. Y. ; Abdulkareem, A. S. ; Kovo, A. S. ; Azeez, O. S. ; Tijani, J. O. ; Eterigho, E. J.</creatorcontrib><description>Carbon nanofibers (CNFs) were prepared via the deposition of acetylene gas on bimetallic catalyst (Fe–Co) supported on kaolin in a catalytic chemical vapour reactor. Carbon nanofibers/Pt nanocomposite (Pt catalyst) was synthesized by immobilization of potassium tetrachloroplatinate (IV) (K
2
PtCl
4
) onto the carbon nanofibers (CNFs) by a wet impregnation method. The effects of mass of carbon nanofibers (CNFs) (0.25–0.30 g) and deposition time (150–180 min) on the percentage of platinum (Pt) deposited on the nanofiber were investigated. The developed CNFs/Pt was characterized using different analytical tools such as HRSEM, EDS, HRTEM, BET, TGA, XRD, XPS and cyclic voltammetry (CV). The XRD patterns revealed the crystallite size of the Pt catalyst ranged between 5.54 and 6.69 nm, and the size decreased with increasing mass of support (CNFs). The HRTEM/HRSEM analysis of the CNFs/Pt catalyst showed that the dispersion and distribution pattern and the shape of the catalyst changes as the amount of CNFs increased from 0.25 to 0.3 g. However, deposition time did not influence the crystalline nature of the catalysts. XPS analysis demonstrated the existence of different oxidation states of Pt particles on the surface of CNFs. The CV analysis revealed that CNFs/Pt catalyst supports the oxygen reduction reaction and hydrogen oxidation reaction in the fuel cell. The platinum loading of 0.002–0.004 mg
pt
/cm
2
in the fabricated electrodes using the developed CNFs/Pt nanocomposite was compared well with other electrodes (fabricated with other support materials) such as carbon black, carbon nanotubes, aerogel and titanium.</description><identifier>ISSN: 2193-567X</identifier><identifier>ISSN: 1319-8025</identifier><identifier>EISSN: 2191-4281</identifier><identifier>DOI: 10.1007/s13369-020-04498-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acetylene ; Aerogels ; Bimetals ; Carbon black ; Carbon fibers ; Carbon nanotubes ; Catalysts ; Chemical synthesis ; Crystallites ; Deposition ; Electrodes ; Engineering ; Fuel cells ; Humanities and Social Sciences ; Ions ; Kaolin ; multidisciplinary ; Nanocomposites ; Nanofibers ; Nuclear fuels ; Oxidation ; Oxygen reduction reactions ; Platinum ; Research Article-Chemical Engineering ; Science ; X ray photoelectron spectroscopy</subject><ispartof>Arabian journal for science and engineering (2011), 2020-09, Vol.45 (9), p.7329-7346</ispartof><rights>King Fahd University of Petroleum & Minerals 2020</rights><rights>King Fahd University of Petroleum & Minerals 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-50d56e0457d71cf0ef0d999c64678960e760894f8359181821a6d85fb88de9743</citedby><cites>FETCH-LOGICAL-c319t-50d56e0457d71cf0ef0d999c64678960e760894f8359181821a6d85fb88de9743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13369-020-04498-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13369-020-04498-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Mudi, K. Y.</creatorcontrib><creatorcontrib>Abdulkareem, A. S.</creatorcontrib><creatorcontrib>Kovo, A. S.</creatorcontrib><creatorcontrib>Azeez, O. S.</creatorcontrib><creatorcontrib>Tijani, J. O.</creatorcontrib><creatorcontrib>Eterigho, E. J.</creatorcontrib><title>Development of Carbon Nanofibers/Pt Nanocomposites for Fuel Cell Application</title><title>Arabian journal for science and engineering (2011)</title><addtitle>Arab J Sci Eng</addtitle><description>Carbon nanofibers (CNFs) were prepared via the deposition of acetylene gas on bimetallic catalyst (Fe–Co) supported on kaolin in a catalytic chemical vapour reactor. Carbon nanofibers/Pt nanocomposite (Pt catalyst) was synthesized by immobilization of potassium tetrachloroplatinate (IV) (K
2
PtCl
4
) onto the carbon nanofibers (CNFs) by a wet impregnation method. The effects of mass of carbon nanofibers (CNFs) (0.25–0.30 g) and deposition time (150–180 min) on the percentage of platinum (Pt) deposited on the nanofiber were investigated. The developed CNFs/Pt was characterized using different analytical tools such as HRSEM, EDS, HRTEM, BET, TGA, XRD, XPS and cyclic voltammetry (CV). The XRD patterns revealed the crystallite size of the Pt catalyst ranged between 5.54 and 6.69 nm, and the size decreased with increasing mass of support (CNFs). The HRTEM/HRSEM analysis of the CNFs/Pt catalyst showed that the dispersion and distribution pattern and the shape of the catalyst changes as the amount of CNFs increased from 0.25 to 0.3 g. However, deposition time did not influence the crystalline nature of the catalysts. XPS analysis demonstrated the existence of different oxidation states of Pt particles on the surface of CNFs. The CV analysis revealed that CNFs/Pt catalyst supports the oxygen reduction reaction and hydrogen oxidation reaction in the fuel cell. The platinum loading of 0.002–0.004 mg
pt
/cm
2
in the fabricated electrodes using the developed CNFs/Pt nanocomposite was compared well with other electrodes (fabricated with other support materials) such as carbon black, carbon nanotubes, aerogel and titanium.</description><subject>Acetylene</subject><subject>Aerogels</subject><subject>Bimetals</subject><subject>Carbon black</subject><subject>Carbon fibers</subject><subject>Carbon nanotubes</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Crystallites</subject><subject>Deposition</subject><subject>Electrodes</subject><subject>Engineering</subject><subject>Fuel cells</subject><subject>Humanities and Social Sciences</subject><subject>Ions</subject><subject>Kaolin</subject><subject>multidisciplinary</subject><subject>Nanocomposites</subject><subject>Nanofibers</subject><subject>Nuclear fuels</subject><subject>Oxidation</subject><subject>Oxygen reduction reactions</subject><subject>Platinum</subject><subject>Research Article-Chemical Engineering</subject><subject>Science</subject><subject>X ray photoelectron spectroscopy</subject><issn>2193-567X</issn><issn>1319-8025</issn><issn>2191-4281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouKz7BzwVPEdnmu_jUl0VFvWg4C30I5FKt6lJV_DfW7eCN08zA8_7DjyEnCNcIoC6SsiYNBRyoMC50ZQdkUWOBinPNR4fdkaFVK-nZJVSWwHXzAhEtiDba_fpujDsXD9mwWdFGavQZw9lH3xbuZiunsbDVYfdEFI7upT5ELPN3nVZ4bouWw9D19bl2Ib-jJz4sktu9TuX5GVz81zc0e3j7X2x3tKaoRmpgEZIB1yoRmHtwXlojDG15FJpI8EpCdpwr5kwqFHnWMpGC19p3TijOFuSi7l3iOFj79Jo38M-9tNLm3MBHHOmzETlM1XHkFJ03g6x3ZXxyyLYH3F2FmcncfYgzrIpxOZQmuD-zcW_6n9S312gbyA</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Mudi, K. Y.</creator><creator>Abdulkareem, A. S.</creator><creator>Kovo, A. S.</creator><creator>Azeez, O. S.</creator><creator>Tijani, J. O.</creator><creator>Eterigho, E. J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200901</creationdate><title>Development of Carbon Nanofibers/Pt Nanocomposites for Fuel Cell Application</title><author>Mudi, K. Y. ; Abdulkareem, A. S. ; Kovo, A. S. ; Azeez, O. S. ; Tijani, J. O. ; Eterigho, E. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-50d56e0457d71cf0ef0d999c64678960e760894f8359181821a6d85fb88de9743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetylene</topic><topic>Aerogels</topic><topic>Bimetals</topic><topic>Carbon black</topic><topic>Carbon fibers</topic><topic>Carbon nanotubes</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Crystallites</topic><topic>Deposition</topic><topic>Electrodes</topic><topic>Engineering</topic><topic>Fuel cells</topic><topic>Humanities and Social Sciences</topic><topic>Ions</topic><topic>Kaolin</topic><topic>multidisciplinary</topic><topic>Nanocomposites</topic><topic>Nanofibers</topic><topic>Nuclear fuels</topic><topic>Oxidation</topic><topic>Oxygen reduction reactions</topic><topic>Platinum</topic><topic>Research Article-Chemical Engineering</topic><topic>Science</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mudi, K. Y.</creatorcontrib><creatorcontrib>Abdulkareem, A. S.</creatorcontrib><creatorcontrib>Kovo, A. S.</creatorcontrib><creatorcontrib>Azeez, O. S.</creatorcontrib><creatorcontrib>Tijani, J. O.</creatorcontrib><creatorcontrib>Eterigho, E. J.</creatorcontrib><collection>CrossRef</collection><jtitle>Arabian journal for science and engineering (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mudi, K. Y.</au><au>Abdulkareem, A. S.</au><au>Kovo, A. S.</au><au>Azeez, O. S.</au><au>Tijani, J. O.</au><au>Eterigho, E. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Carbon Nanofibers/Pt Nanocomposites for Fuel Cell Application</atitle><jtitle>Arabian journal for science and engineering (2011)</jtitle><stitle>Arab J Sci Eng</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>45</volume><issue>9</issue><spage>7329</spage><epage>7346</epage><pages>7329-7346</pages><issn>2193-567X</issn><issn>1319-8025</issn><eissn>2191-4281</eissn><abstract>Carbon nanofibers (CNFs) were prepared via the deposition of acetylene gas on bimetallic catalyst (Fe–Co) supported on kaolin in a catalytic chemical vapour reactor. Carbon nanofibers/Pt nanocomposite (Pt catalyst) was synthesized by immobilization of potassium tetrachloroplatinate (IV) (K
2
PtCl
4
) onto the carbon nanofibers (CNFs) by a wet impregnation method. The effects of mass of carbon nanofibers (CNFs) (0.25–0.30 g) and deposition time (150–180 min) on the percentage of platinum (Pt) deposited on the nanofiber were investigated. The developed CNFs/Pt was characterized using different analytical tools such as HRSEM, EDS, HRTEM, BET, TGA, XRD, XPS and cyclic voltammetry (CV). The XRD patterns revealed the crystallite size of the Pt catalyst ranged between 5.54 and 6.69 nm, and the size decreased with increasing mass of support (CNFs). The HRTEM/HRSEM analysis of the CNFs/Pt catalyst showed that the dispersion and distribution pattern and the shape of the catalyst changes as the amount of CNFs increased from 0.25 to 0.3 g. However, deposition time did not influence the crystalline nature of the catalysts. XPS analysis demonstrated the existence of different oxidation states of Pt particles on the surface of CNFs. The CV analysis revealed that CNFs/Pt catalyst supports the oxygen reduction reaction and hydrogen oxidation reaction in the fuel cell. The platinum loading of 0.002–0.004 mg
pt
/cm
2
in the fabricated electrodes using the developed CNFs/Pt nanocomposite was compared well with other electrodes (fabricated with other support materials) such as carbon black, carbon nanotubes, aerogel and titanium.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13369-020-04498-3</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2193-567X |
ispartof | Arabian journal for science and engineering (2011), 2020-09, Vol.45 (9), p.7329-7346 |
issn | 2193-567X 1319-8025 2191-4281 |
language | eng |
recordid | cdi_proquest_journals_2450412379 |
source | Springer Nature - Complete Springer Journals |
subjects | Acetylene Aerogels Bimetals Carbon black Carbon fibers Carbon nanotubes Catalysts Chemical synthesis Crystallites Deposition Electrodes Engineering Fuel cells Humanities and Social Sciences Ions Kaolin multidisciplinary Nanocomposites Nanofibers Nuclear fuels Oxidation Oxygen reduction reactions Platinum Research Article-Chemical Engineering Science X ray photoelectron spectroscopy |
title | Development of Carbon Nanofibers/Pt Nanocomposites for Fuel Cell Application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A58%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Carbon%20Nanofibers/Pt%20Nanocomposites%20for%20Fuel%20Cell%20Application&rft.jtitle=Arabian%20journal%20for%20science%20and%20engineering%20(2011)&rft.au=Mudi,%20K.%20Y.&rft.date=2020-09-01&rft.volume=45&rft.issue=9&rft.spage=7329&rft.epage=7346&rft.pages=7329-7346&rft.issn=2193-567X&rft.eissn=2191-4281&rft_id=info:doi/10.1007/s13369-020-04498-3&rft_dat=%3Cproquest_cross%3E2450412379%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450412379&rft_id=info:pmid/&rfr_iscdi=true |