High Rate Performance of Nano-Structured LiFePO4/C Cathode Material Prepared by a Polymer-Assisted Method from Inexpensive Iron(III) Raw Material

A spherical carbon coated nano-structured LiFePO 4 composite is synthesized by a polymer-assisted method from inexpensive iron(III) raw material. The synthesis process includes two steps: (1) nano-FePO 4 /polyaniline composites with core–shell structure are synthesized through the in-situ polymeriza...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian journal of electrochemistry 2020-08, Vol.56 (8), p.690-697
Hauptverfasser: Wenjing Pu, Lu, Wei, Chen, Zhipeng, Xie, Kai, Zheng, Chunman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 697
container_issue 8
container_start_page 690
container_title Russian journal of electrochemistry
container_volume 56
creator Wenjing Pu
Lu, Wei
Chen, Zhipeng
Xie, Kai
Zheng, Chunman
description A spherical carbon coated nano-structured LiFePO 4 composite is synthesized by a polymer-assisted method from inexpensive iron(III) raw material. The synthesis process includes two steps: (1) nano-FePO 4 /polyaniline composites with core–shell structure are synthesized through the in-situ polymerization of aniline; (2) LiFePO 4 /C composites are prepared through carbothermal reduction with the nano-FePO 4 /polyaniline and sucrose as raw materials. The structure, surface morphology of the materials and the properties of the coated carbon are investigated by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy. The obtained nano-structured LiFePO 4 /carbon composite has a spherical morphology compose of ordered olivine structure, which is coated with 2 nm thick amorphous layer of carbon. At the same time, the materials are linked together by amorphous carbon from sucrose decomposition. The aniline plays an important role during the synthesis process. The electrochemical properties of the materials are tested by charge–discharge measurements. The obtained nano-structured LiFePO 4 /carbon composite shows excellent electrochemical properties, especially its high rate performance. It exhibits initial discharge capacities of 138, 136, 118, 103, and 92 mA h g –1 at 0.2, 1, 10, 20, and 30 C rate between 3.65 and 2.0 V, respectively. That makes it a promising cathode material for advanced power Li-ion batteries. The excellent electrochemical properties of the materials can be ascribed to the two different amorphous carbons. The carbon coated on the surface of LiFePO 4 effectively reduces inter-particle agglomeration of the LiFePO 4 particles. The carbon interlinked between the composite improve the electronic conductivity. Those shorten the lithium ions diffusion length and improve the electric contact between LiFePO 4 particles.
doi_str_mv 10.1134/S1023193520050092
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450408826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450408826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e0a0cd2cce1d7851d83be5a76444aa8fc68edeca9599a1421f17f455999d31fc3</originalsourceid><addsrcrecordid>eNp1kMtKw0AUhoMoWKsP4G7AjS5i55bbshRrA60Gq-swnZxpU5pMnEnUPoZv7ISKLsTVuX3__8PxvEuCbwlhfLQkmDKSsIBiHGCc0CNvQEIc-4xxeux6d_b7-6l3Zu0WYxxHJBl4n7NyvUFPogWUgVHaVKKWgLRCD6LW_rI1nWw7AwWal1PIHvlogiai3egC0MKpTCl2KDPQiJ5Z7ZFAmd7tKzD-2NrStm67gJ5HyugKpTV8NFDb8g1QanR9nabpjct__3E7906U2Fm4-K5D72V69zyZ-fPH-3QynvuSkbD1AQssCyolkCKKA1LEbAWBiELOuRCxkmEMBUiRBEkiCKdEkUjxwE1JwYiSbOhdHXwbo187sG2-1Z2pXWROeYA5jmMaOoocKGm0tQZU3piyEmafE5z3n8__fN5p6EFjHVuvwfw6_y_6AgrLhSk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450408826</pqid></control><display><type>article</type><title>High Rate Performance of Nano-Structured LiFePO4/C Cathode Material Prepared by a Polymer-Assisted Method from Inexpensive Iron(III) Raw Material</title><source>SpringerLink Journals</source><creator>Wenjing Pu ; Lu, Wei ; Chen, Zhipeng ; Xie, Kai ; Zheng, Chunman</creator><creatorcontrib>Wenjing Pu ; Lu, Wei ; Chen, Zhipeng ; Xie, Kai ; Zheng, Chunman</creatorcontrib><description>A spherical carbon coated nano-structured LiFePO 4 composite is synthesized by a polymer-assisted method from inexpensive iron(III) raw material. The synthesis process includes two steps: (1) nano-FePO 4 /polyaniline composites with core–shell structure are synthesized through the in-situ polymerization of aniline; (2) LiFePO 4 /C composites are prepared through carbothermal reduction with the nano-FePO 4 /polyaniline and sucrose as raw materials. The structure, surface morphology of the materials and the properties of the coated carbon are investigated by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy. The obtained nano-structured LiFePO 4 /carbon composite has a spherical morphology compose of ordered olivine structure, which is coated with 2 nm thick amorphous layer of carbon. At the same time, the materials are linked together by amorphous carbon from sucrose decomposition. The aniline plays an important role during the synthesis process. The electrochemical properties of the materials are tested by charge–discharge measurements. The obtained nano-structured LiFePO 4 /carbon composite shows excellent electrochemical properties, especially its high rate performance. It exhibits initial discharge capacities of 138, 136, 118, 103, and 92 mA h g –1 at 0.2, 1, 10, 20, and 30 C rate between 3.65 and 2.0 V, respectively. That makes it a promising cathode material for advanced power Li-ion batteries. The excellent electrochemical properties of the materials can be ascribed to the two different amorphous carbons. The carbon coated on the surface of LiFePO 4 effectively reduces inter-particle agglomeration of the LiFePO 4 particles. The carbon interlinked between the composite improve the electronic conductivity. Those shorten the lithium ions diffusion length and improve the electric contact between LiFePO 4 particles.</description><identifier>ISSN: 1023-1935</identifier><identifier>EISSN: 1608-3342</identifier><identifier>DOI: 10.1134/S1023193520050092</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Amorphous materials ; Aniline ; Carbon ; Cathodes ; Chemistry ; Chemistry and Materials Science ; Coating ; Core-shell structure ; Diffusion length ; Discharge ; Electric contacts ; Electrochemical analysis ; Electrochemistry ; Electrode materials ; Electron microscopy ; Iron ; Lithium-ion batteries ; Microscopy ; Morphology ; Olivine ; Particulate composites ; Physical Chemistry ; Polyanilines ; Polymers ; Properties (attributes) ; Raman spectroscopy ; Raw materials ; Rechargeable batteries ; Sucrose</subject><ispartof>Russian journal of electrochemistry, 2020-08, Vol.56 (8), p.690-697</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>Pleiades Publishing, Ltd. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e0a0cd2cce1d7851d83be5a76444aa8fc68edeca9599a1421f17f455999d31fc3</citedby><cites>FETCH-LOGICAL-c316t-e0a0cd2cce1d7851d83be5a76444aa8fc68edeca9599a1421f17f455999d31fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1023193520050092$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1023193520050092$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wenjing Pu</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Chen, Zhipeng</creatorcontrib><creatorcontrib>Xie, Kai</creatorcontrib><creatorcontrib>Zheng, Chunman</creatorcontrib><title>High Rate Performance of Nano-Structured LiFePO4/C Cathode Material Prepared by a Polymer-Assisted Method from Inexpensive Iron(III) Raw Material</title><title>Russian journal of electrochemistry</title><addtitle>Russ J Electrochem</addtitle><description>A spherical carbon coated nano-structured LiFePO 4 composite is synthesized by a polymer-assisted method from inexpensive iron(III) raw material. The synthesis process includes two steps: (1) nano-FePO 4 /polyaniline composites with core–shell structure are synthesized through the in-situ polymerization of aniline; (2) LiFePO 4 /C composites are prepared through carbothermal reduction with the nano-FePO 4 /polyaniline and sucrose as raw materials. The structure, surface morphology of the materials and the properties of the coated carbon are investigated by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy. The obtained nano-structured LiFePO 4 /carbon composite has a spherical morphology compose of ordered olivine structure, which is coated with 2 nm thick amorphous layer of carbon. At the same time, the materials are linked together by amorphous carbon from sucrose decomposition. The aniline plays an important role during the synthesis process. The electrochemical properties of the materials are tested by charge–discharge measurements. The obtained nano-structured LiFePO 4 /carbon composite shows excellent electrochemical properties, especially its high rate performance. It exhibits initial discharge capacities of 138, 136, 118, 103, and 92 mA h g –1 at 0.2, 1, 10, 20, and 30 C rate between 3.65 and 2.0 V, respectively. That makes it a promising cathode material for advanced power Li-ion batteries. The excellent electrochemical properties of the materials can be ascribed to the two different amorphous carbons. The carbon coated on the surface of LiFePO 4 effectively reduces inter-particle agglomeration of the LiFePO 4 particles. The carbon interlinked between the composite improve the electronic conductivity. Those shorten the lithium ions diffusion length and improve the electric contact between LiFePO 4 particles.</description><subject>Amorphous materials</subject><subject>Aniline</subject><subject>Carbon</subject><subject>Cathodes</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Coating</subject><subject>Core-shell structure</subject><subject>Diffusion length</subject><subject>Discharge</subject><subject>Electric contacts</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electron microscopy</subject><subject>Iron</subject><subject>Lithium-ion batteries</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Olivine</subject><subject>Particulate composites</subject><subject>Physical Chemistry</subject><subject>Polyanilines</subject><subject>Polymers</subject><subject>Properties (attributes)</subject><subject>Raman spectroscopy</subject><subject>Raw materials</subject><subject>Rechargeable batteries</subject><subject>Sucrose</subject><issn>1023-1935</issn><issn>1608-3342</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKw0AUhoMoWKsP4G7AjS5i55bbshRrA60Gq-swnZxpU5pMnEnUPoZv7ISKLsTVuX3__8PxvEuCbwlhfLQkmDKSsIBiHGCc0CNvQEIc-4xxeux6d_b7-6l3Zu0WYxxHJBl4n7NyvUFPogWUgVHaVKKWgLRCD6LW_rI1nWw7AwWal1PIHvlogiai3egC0MKpTCl2KDPQiJ5Z7ZFAmd7tKzD-2NrStm67gJ5HyugKpTV8NFDb8g1QanR9nabpjct__3E7906U2Fm4-K5D72V69zyZ-fPH-3QynvuSkbD1AQssCyolkCKKA1LEbAWBiELOuRCxkmEMBUiRBEkiCKdEkUjxwE1JwYiSbOhdHXwbo187sG2-1Z2pXWROeYA5jmMaOoocKGm0tQZU3piyEmafE5z3n8__fN5p6EFjHVuvwfw6_y_6AgrLhSk</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Wenjing Pu</creator><creator>Lu, Wei</creator><creator>Chen, Zhipeng</creator><creator>Xie, Kai</creator><creator>Zheng, Chunman</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200801</creationdate><title>High Rate Performance of Nano-Structured LiFePO4/C Cathode Material Prepared by a Polymer-Assisted Method from Inexpensive Iron(III) Raw Material</title><author>Wenjing Pu ; Lu, Wei ; Chen, Zhipeng ; Xie, Kai ; Zheng, Chunman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e0a0cd2cce1d7851d83be5a76444aa8fc68edeca9599a1421f17f455999d31fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amorphous materials</topic><topic>Aniline</topic><topic>Carbon</topic><topic>Cathodes</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Coating</topic><topic>Core-shell structure</topic><topic>Diffusion length</topic><topic>Discharge</topic><topic>Electric contacts</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electron microscopy</topic><topic>Iron</topic><topic>Lithium-ion batteries</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Olivine</topic><topic>Particulate composites</topic><topic>Physical Chemistry</topic><topic>Polyanilines</topic><topic>Polymers</topic><topic>Properties (attributes)</topic><topic>Raman spectroscopy</topic><topic>Raw materials</topic><topic>Rechargeable batteries</topic><topic>Sucrose</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wenjing Pu</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Chen, Zhipeng</creatorcontrib><creatorcontrib>Xie, Kai</creatorcontrib><creatorcontrib>Zheng, Chunman</creatorcontrib><collection>CrossRef</collection><jtitle>Russian journal of electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wenjing Pu</au><au>Lu, Wei</au><au>Chen, Zhipeng</au><au>Xie, Kai</au><au>Zheng, Chunman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Rate Performance of Nano-Structured LiFePO4/C Cathode Material Prepared by a Polymer-Assisted Method from Inexpensive Iron(III) Raw Material</atitle><jtitle>Russian journal of electrochemistry</jtitle><stitle>Russ J Electrochem</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>56</volume><issue>8</issue><spage>690</spage><epage>697</epage><pages>690-697</pages><issn>1023-1935</issn><eissn>1608-3342</eissn><abstract>A spherical carbon coated nano-structured LiFePO 4 composite is synthesized by a polymer-assisted method from inexpensive iron(III) raw material. The synthesis process includes two steps: (1) nano-FePO 4 /polyaniline composites with core–shell structure are synthesized through the in-situ polymerization of aniline; (2) LiFePO 4 /C composites are prepared through carbothermal reduction with the nano-FePO 4 /polyaniline and sucrose as raw materials. The structure, surface morphology of the materials and the properties of the coated carbon are investigated by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy. The obtained nano-structured LiFePO 4 /carbon composite has a spherical morphology compose of ordered olivine structure, which is coated with 2 nm thick amorphous layer of carbon. At the same time, the materials are linked together by amorphous carbon from sucrose decomposition. The aniline plays an important role during the synthesis process. The electrochemical properties of the materials are tested by charge–discharge measurements. The obtained nano-structured LiFePO 4 /carbon composite shows excellent electrochemical properties, especially its high rate performance. It exhibits initial discharge capacities of 138, 136, 118, 103, and 92 mA h g –1 at 0.2, 1, 10, 20, and 30 C rate between 3.65 and 2.0 V, respectively. That makes it a promising cathode material for advanced power Li-ion batteries. The excellent electrochemical properties of the materials can be ascribed to the two different amorphous carbons. The carbon coated on the surface of LiFePO 4 effectively reduces inter-particle agglomeration of the LiFePO 4 particles. The carbon interlinked between the composite improve the electronic conductivity. Those shorten the lithium ions diffusion length and improve the electric contact between LiFePO 4 particles.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1023193520050092</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1023-1935
ispartof Russian journal of electrochemistry, 2020-08, Vol.56 (8), p.690-697
issn 1023-1935
1608-3342
language eng
recordid cdi_proquest_journals_2450408826
source SpringerLink Journals
subjects Amorphous materials
Aniline
Carbon
Cathodes
Chemistry
Chemistry and Materials Science
Coating
Core-shell structure
Diffusion length
Discharge
Electric contacts
Electrochemical analysis
Electrochemistry
Electrode materials
Electron microscopy
Iron
Lithium-ion batteries
Microscopy
Morphology
Olivine
Particulate composites
Physical Chemistry
Polyanilines
Polymers
Properties (attributes)
Raman spectroscopy
Raw materials
Rechargeable batteries
Sucrose
title High Rate Performance of Nano-Structured LiFePO4/C Cathode Material Prepared by a Polymer-Assisted Method from Inexpensive Iron(III) Raw Material
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T10%3A20%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Rate%20Performance%20of%20Nano-Structured%20LiFePO4/C%20Cathode%20Material%20Prepared%20by%20a%20Polymer-Assisted%20Method%20from%20Inexpensive%20Iron(III)%20Raw%20Material&rft.jtitle=Russian%20journal%20of%20electrochemistry&rft.au=Wenjing%20Pu&rft.date=2020-08-01&rft.volume=56&rft.issue=8&rft.spage=690&rft.epage=697&rft.pages=690-697&rft.issn=1023-1935&rft.eissn=1608-3342&rft_id=info:doi/10.1134/S1023193520050092&rft_dat=%3Cproquest_cross%3E2450408826%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450408826&rft_id=info:pmid/&rfr_iscdi=true