Distance Matrices Perturbed by Laplacians
Let T be a tree with n vertices. To each edge of T we assign a weight which is a positive definite matrix of some fixed order, say, s . Let D ij denote the sum of all the weights lying in the path connecting the vertices i and j of T . We now say that D ij is the distance between i and j . Define D...
Gespeichert in:
Veröffentlicht in: | Applications of Mathematics 2020-10, Vol.65 (5), p.599-607 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 607 |
---|---|
container_issue | 5 |
container_start_page | 599 |
container_title | Applications of Mathematics |
container_volume | 65 |
creator | Ramamurthy, Balaji Bapat, Ravindra Bhalchandra Goel, Shivani |
description | Let
T
be a tree with
n
vertices. To each edge of
T
we assign a weight which is a positive definite matrix of some fixed order, say,
s
. Let
D
ij
denote the sum of all the weights lying in the path connecting the vertices
i
and
j
of
T
. We now say that
D
ij
is the distance between i and
j
. Define
D
≔ [
D
ij
], where
D
ii
is the
s
×
s
null matrix and for
i
≠
j, D
ij
is the distance between
i
and
j
. Let
G
be an arbitrary connected weighted graph with
n
vertices, where each weight is a positive definite matrix of order
s
. If
i
and
j
are adjacent, then define
L
ij
≔ − W
ij
−1
, where
W
ij
is the weight of the edge (
i, j
). Define
L
i
i
=
∑
i
≠
j
j
=
1
n
W
i
j
−
1
.
The Laplacian of
G
is now the
ns × ns
block matrix
L
≔ [
L
ij
]. In this paper, we first note that
D
−1
−
L
is always nonsingular and then we prove that
D
and its perturbation (
D
−1
−
L
)
−1
have many interesting properties in common. |
doi_str_mv | 10.21136/AM.2020.0362-19 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450403027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450403027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-eb1904914637d0f557d986ce06290039613ec1bcfe830ac3d329699cd042c31f3</originalsourceid><addsrcrecordid>eNp1kDFPhEAQhTdGE_G0tySxsgBndmFhSnJ6agLRQuvNsiyGywnnLhT37-XExMpqkpfve5M8xq4RYo4o5F1RxRw4xCAkj5BOWIBpxiNCoFMWQD6nGSVwzi683wIAyTwP2O1950fdGxtWenSdsT58tW6cXG2bsD6Epd7vtOl07y_ZWat33l793hV73zy8rZ-i8uXxeV2UkRFpOka2RoKEMJEia6BN06yhXBoLkhOAIInCGqxNa3MB2ohGcJJEpoGEG4GtWLGbpXfvhq_J-lFth8n180vFkxQSEMCzmYKFMm7w3tlW7V33qd1BIaifQVRRqeMg6jiIQpoVXBQ_o_2HdX_F_zrfn69f4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450403027</pqid></control><display><type>article</type><title>Distance Matrices Perturbed by Laplacians</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ramamurthy, Balaji ; Bapat, Ravindra Bhalchandra ; Goel, Shivani</creator><creatorcontrib>Ramamurthy, Balaji ; Bapat, Ravindra Bhalchandra ; Goel, Shivani</creatorcontrib><description>Let
T
be a tree with
n
vertices. To each edge of
T
we assign a weight which is a positive definite matrix of some fixed order, say,
s
. Let
D
ij
denote the sum of all the weights lying in the path connecting the vertices
i
and
j
of
T
. We now say that
D
ij
is the distance between i and
j
. Define
D
≔ [
D
ij
], where
D
ii
is the
s
×
s
null matrix and for
i
≠
j, D
ij
is the distance between
i
and
j
. Let
G
be an arbitrary connected weighted graph with
n
vertices, where each weight is a positive definite matrix of order
s
. If
i
and
j
are adjacent, then define
L
ij
≔ − W
ij
−1
, where
W
ij
is the weight of the edge (
i, j
). Define
L
i
i
=
∑
i
≠
j
j
=
1
n
W
i
j
−
1
.
The Laplacian of
G
is now the
ns × ns
block matrix
L
≔ [
L
ij
]. In this paper, we first note that
D
−1
−
L
is always nonsingular and then we prove that
D
and its perturbation (
D
−1
−
L
)
−1
have many interesting properties in common.</description><identifier>ISSN: 0862-7940</identifier><identifier>EISSN: 1572-9109</identifier><identifier>DOI: 10.21136/AM.2020.0362-19</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Apexes ; Applications of Mathematics ; Classical and Continuum Physics ; Graph theory ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Matrix methods ; Optimization ; Perturbation ; Theoretical ; Weight</subject><ispartof>Applications of Mathematics, 2020-10, Vol.65 (5), p.599-607</ispartof><rights>Mathematical Institute Academy of Sciences of Cz 2020</rights><rights>Mathematical Institute Academy of Sciences of Cz 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-eb1904914637d0f557d986ce06290039613ec1bcfe830ac3d329699cd042c31f3</citedby><cites>FETCH-LOGICAL-c355t-eb1904914637d0f557d986ce06290039613ec1bcfe830ac3d329699cd042c31f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.21136/AM.2020.0362-19$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.21136/AM.2020.0362-19$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Ramamurthy, Balaji</creatorcontrib><creatorcontrib>Bapat, Ravindra Bhalchandra</creatorcontrib><creatorcontrib>Goel, Shivani</creatorcontrib><title>Distance Matrices Perturbed by Laplacians</title><title>Applications of Mathematics</title><addtitle>Appl Math</addtitle><description>Let
T
be a tree with
n
vertices. To each edge of
T
we assign a weight which is a positive definite matrix of some fixed order, say,
s
. Let
D
ij
denote the sum of all the weights lying in the path connecting the vertices
i
and
j
of
T
. We now say that
D
ij
is the distance between i and
j
. Define
D
≔ [
D
ij
], where
D
ii
is the
s
×
s
null matrix and for
i
≠
j, D
ij
is the distance between
i
and
j
. Let
G
be an arbitrary connected weighted graph with
n
vertices, where each weight is a positive definite matrix of order
s
. If
i
and
j
are adjacent, then define
L
ij
≔ − W
ij
−1
, where
W
ij
is the weight of the edge (
i, j
). Define
L
i
i
=
∑
i
≠
j
j
=
1
n
W
i
j
−
1
.
The Laplacian of
G
is now the
ns × ns
block matrix
L
≔ [
L
ij
]. In this paper, we first note that
D
−1
−
L
is always nonsingular and then we prove that
D
and its perturbation (
D
−1
−
L
)
−1
have many interesting properties in common.</description><subject>Analysis</subject><subject>Apexes</subject><subject>Applications of Mathematics</subject><subject>Classical and Continuum Physics</subject><subject>Graph theory</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix methods</subject><subject>Optimization</subject><subject>Perturbation</subject><subject>Theoretical</subject><subject>Weight</subject><issn>0862-7940</issn><issn>1572-9109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPhEAQhTdGE_G0tySxsgBndmFhSnJ6agLRQuvNsiyGywnnLhT37-XExMpqkpfve5M8xq4RYo4o5F1RxRw4xCAkj5BOWIBpxiNCoFMWQD6nGSVwzi683wIAyTwP2O1950fdGxtWenSdsT58tW6cXG2bsD6Epd7vtOl07y_ZWat33l793hV73zy8rZ-i8uXxeV2UkRFpOka2RoKEMJEia6BN06yhXBoLkhOAIInCGqxNa3MB2ohGcJJEpoGEG4GtWLGbpXfvhq_J-lFth8n180vFkxQSEMCzmYKFMm7w3tlW7V33qd1BIaifQVRRqeMg6jiIQpoVXBQ_o_2HdX_F_zrfn69f4Q</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Ramamurthy, Balaji</creator><creator>Bapat, Ravindra Bhalchandra</creator><creator>Goel, Shivani</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20201001</creationdate><title>Distance Matrices Perturbed by Laplacians</title><author>Ramamurthy, Balaji ; Bapat, Ravindra Bhalchandra ; Goel, Shivani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-eb1904914637d0f557d986ce06290039613ec1bcfe830ac3d329699cd042c31f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Apexes</topic><topic>Applications of Mathematics</topic><topic>Classical and Continuum Physics</topic><topic>Graph theory</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix methods</topic><topic>Optimization</topic><topic>Perturbation</topic><topic>Theoretical</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramamurthy, Balaji</creatorcontrib><creatorcontrib>Bapat, Ravindra Bhalchandra</creatorcontrib><creatorcontrib>Goel, Shivani</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applications of Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramamurthy, Balaji</au><au>Bapat, Ravindra Bhalchandra</au><au>Goel, Shivani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distance Matrices Perturbed by Laplacians</atitle><jtitle>Applications of Mathematics</jtitle><stitle>Appl Math</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>65</volume><issue>5</issue><spage>599</spage><epage>607</epage><pages>599-607</pages><issn>0862-7940</issn><eissn>1572-9109</eissn><abstract>Let
T
be a tree with
n
vertices. To each edge of
T
we assign a weight which is a positive definite matrix of some fixed order, say,
s
. Let
D
ij
denote the sum of all the weights lying in the path connecting the vertices
i
and
j
of
T
. We now say that
D
ij
is the distance between i and
j
. Define
D
≔ [
D
ij
], where
D
ii
is the
s
×
s
null matrix and for
i
≠
j, D
ij
is the distance between
i
and
j
. Let
G
be an arbitrary connected weighted graph with
n
vertices, where each weight is a positive definite matrix of order
s
. If
i
and
j
are adjacent, then define
L
ij
≔ − W
ij
−1
, where
W
ij
is the weight of the edge (
i, j
). Define
L
i
i
=
∑
i
≠
j
j
=
1
n
W
i
j
−
1
.
The Laplacian of
G
is now the
ns × ns
block matrix
L
≔ [
L
ij
]. In this paper, we first note that
D
−1
−
L
is always nonsingular and then we prove that
D
and its perturbation (
D
−1
−
L
)
−1
have many interesting properties in common.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.21136/AM.2020.0362-19</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0862-7940 |
ispartof | Applications of Mathematics, 2020-10, Vol.65 (5), p.599-607 |
issn | 0862-7940 1572-9109 |
language | eng |
recordid | cdi_proquest_journals_2450403027 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerLink Journals - AutoHoldings |
subjects | Analysis Apexes Applications of Mathematics Classical and Continuum Physics Graph theory Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Matrix methods Optimization Perturbation Theoretical Weight |
title | Distance Matrices Perturbed by Laplacians |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A06%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distance%20Matrices%20Perturbed%20by%20Laplacians&rft.jtitle=Applications%20of%20Mathematics&rft.au=Ramamurthy,%20Balaji&rft.date=2020-10-01&rft.volume=65&rft.issue=5&rft.spage=599&rft.epage=607&rft.pages=599-607&rft.issn=0862-7940&rft.eissn=1572-9109&rft_id=info:doi/10.21136/AM.2020.0362-19&rft_dat=%3Cproquest_cross%3E2450403027%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450403027&rft_id=info:pmid/&rfr_iscdi=true |