Distance Matrices Perturbed by Laplacians

Let T be a tree with n vertices. To each edge of T we assign a weight which is a positive definite matrix of some fixed order, say, s . Let D ij denote the sum of all the weights lying in the path connecting the vertices i and j of T . We now say that D ij is the distance between i and j . Define D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applications of Mathematics 2020-10, Vol.65 (5), p.599-607
Hauptverfasser: Ramamurthy, Balaji, Bapat, Ravindra Bhalchandra, Goel, Shivani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 607
container_issue 5
container_start_page 599
container_title Applications of Mathematics
container_volume 65
creator Ramamurthy, Balaji
Bapat, Ravindra Bhalchandra
Goel, Shivani
description Let T be a tree with n vertices. To each edge of T we assign a weight which is a positive definite matrix of some fixed order, say, s . Let D ij denote the sum of all the weights lying in the path connecting the vertices i and j of T . We now say that D ij is the distance between i and j . Define D ≔ [ D ij ], where D ii is the s × s null matrix and for i ≠ j, D ij is the distance between i and j . Let G be an arbitrary connected weighted graph with n vertices, where each weight is a positive definite matrix of order s . If i and j are adjacent, then define L ij ≔ − W ij −1 , where W ij is the weight of the edge ( i, j ). Define L i i = ∑ i ≠ j j = 1 n W i j − 1 . The Laplacian of G is now the ns × ns block matrix L ≔ [ L ij ]. In this paper, we first note that D −1 − L is always nonsingular and then we prove that D and its perturbation ( D −1 − L ) −1 have many interesting properties in common.
doi_str_mv 10.21136/AM.2020.0362-19
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450403027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450403027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-eb1904914637d0f557d986ce06290039613ec1bcfe830ac3d329699cd042c31f3</originalsourceid><addsrcrecordid>eNp1kDFPhEAQhTdGE_G0tySxsgBndmFhSnJ6agLRQuvNsiyGywnnLhT37-XExMpqkpfve5M8xq4RYo4o5F1RxRw4xCAkj5BOWIBpxiNCoFMWQD6nGSVwzi683wIAyTwP2O1950fdGxtWenSdsT58tW6cXG2bsD6Epd7vtOl07y_ZWat33l793hV73zy8rZ-i8uXxeV2UkRFpOka2RoKEMJEia6BN06yhXBoLkhOAIInCGqxNa3MB2ohGcJJEpoGEG4GtWLGbpXfvhq_J-lFth8n180vFkxQSEMCzmYKFMm7w3tlW7V33qd1BIaifQVRRqeMg6jiIQpoVXBQ_o_2HdX_F_zrfn69f4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450403027</pqid></control><display><type>article</type><title>Distance Matrices Perturbed by Laplacians</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ramamurthy, Balaji ; Bapat, Ravindra Bhalchandra ; Goel, Shivani</creator><creatorcontrib>Ramamurthy, Balaji ; Bapat, Ravindra Bhalchandra ; Goel, Shivani</creatorcontrib><description>Let T be a tree with n vertices. To each edge of T we assign a weight which is a positive definite matrix of some fixed order, say, s . Let D ij denote the sum of all the weights lying in the path connecting the vertices i and j of T . We now say that D ij is the distance between i and j . Define D ≔ [ D ij ], where D ii is the s × s null matrix and for i ≠ j, D ij is the distance between i and j . Let G be an arbitrary connected weighted graph with n vertices, where each weight is a positive definite matrix of order s . If i and j are adjacent, then define L ij ≔ − W ij −1 , where W ij is the weight of the edge ( i, j ). Define L i i = ∑ i ≠ j j = 1 n W i j − 1 . The Laplacian of G is now the ns × ns block matrix L ≔ [ L ij ]. In this paper, we first note that D −1 − L is always nonsingular and then we prove that D and its perturbation ( D −1 − L ) −1 have many interesting properties in common.</description><identifier>ISSN: 0862-7940</identifier><identifier>EISSN: 1572-9109</identifier><identifier>DOI: 10.21136/AM.2020.0362-19</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Apexes ; Applications of Mathematics ; Classical and Continuum Physics ; Graph theory ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Matrix methods ; Optimization ; Perturbation ; Theoretical ; Weight</subject><ispartof>Applications of Mathematics, 2020-10, Vol.65 (5), p.599-607</ispartof><rights>Mathematical Institute Academy of Sciences of Cz 2020</rights><rights>Mathematical Institute Academy of Sciences of Cz 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-eb1904914637d0f557d986ce06290039613ec1bcfe830ac3d329699cd042c31f3</citedby><cites>FETCH-LOGICAL-c355t-eb1904914637d0f557d986ce06290039613ec1bcfe830ac3d329699cd042c31f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.21136/AM.2020.0362-19$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.21136/AM.2020.0362-19$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Ramamurthy, Balaji</creatorcontrib><creatorcontrib>Bapat, Ravindra Bhalchandra</creatorcontrib><creatorcontrib>Goel, Shivani</creatorcontrib><title>Distance Matrices Perturbed by Laplacians</title><title>Applications of Mathematics</title><addtitle>Appl Math</addtitle><description>Let T be a tree with n vertices. To each edge of T we assign a weight which is a positive definite matrix of some fixed order, say, s . Let D ij denote the sum of all the weights lying in the path connecting the vertices i and j of T . We now say that D ij is the distance between i and j . Define D ≔ [ D ij ], where D ii is the s × s null matrix and for i ≠ j, D ij is the distance between i and j . Let G be an arbitrary connected weighted graph with n vertices, where each weight is a positive definite matrix of order s . If i and j are adjacent, then define L ij ≔ − W ij −1 , where W ij is the weight of the edge ( i, j ). Define L i i = ∑ i ≠ j j = 1 n W i j − 1 . The Laplacian of G is now the ns × ns block matrix L ≔ [ L ij ]. In this paper, we first note that D −1 − L is always nonsingular and then we prove that D and its perturbation ( D −1 − L ) −1 have many interesting properties in common.</description><subject>Analysis</subject><subject>Apexes</subject><subject>Applications of Mathematics</subject><subject>Classical and Continuum Physics</subject><subject>Graph theory</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix methods</subject><subject>Optimization</subject><subject>Perturbation</subject><subject>Theoretical</subject><subject>Weight</subject><issn>0862-7940</issn><issn>1572-9109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPhEAQhTdGE_G0tySxsgBndmFhSnJ6agLRQuvNsiyGywnnLhT37-XExMpqkpfve5M8xq4RYo4o5F1RxRw4xCAkj5BOWIBpxiNCoFMWQD6nGSVwzi683wIAyTwP2O1950fdGxtWenSdsT58tW6cXG2bsD6Epd7vtOl07y_ZWat33l793hV73zy8rZ-i8uXxeV2UkRFpOka2RoKEMJEia6BN06yhXBoLkhOAIInCGqxNa3MB2ohGcJJEpoGEG4GtWLGbpXfvhq_J-lFth8n180vFkxQSEMCzmYKFMm7w3tlW7V33qd1BIaifQVRRqeMg6jiIQpoVXBQ_o_2HdX_F_zrfn69f4Q</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Ramamurthy, Balaji</creator><creator>Bapat, Ravindra Bhalchandra</creator><creator>Goel, Shivani</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20201001</creationdate><title>Distance Matrices Perturbed by Laplacians</title><author>Ramamurthy, Balaji ; Bapat, Ravindra Bhalchandra ; Goel, Shivani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-eb1904914637d0f557d986ce06290039613ec1bcfe830ac3d329699cd042c31f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Apexes</topic><topic>Applications of Mathematics</topic><topic>Classical and Continuum Physics</topic><topic>Graph theory</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix methods</topic><topic>Optimization</topic><topic>Perturbation</topic><topic>Theoretical</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramamurthy, Balaji</creatorcontrib><creatorcontrib>Bapat, Ravindra Bhalchandra</creatorcontrib><creatorcontrib>Goel, Shivani</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applications of Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramamurthy, Balaji</au><au>Bapat, Ravindra Bhalchandra</au><au>Goel, Shivani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distance Matrices Perturbed by Laplacians</atitle><jtitle>Applications of Mathematics</jtitle><stitle>Appl Math</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>65</volume><issue>5</issue><spage>599</spage><epage>607</epage><pages>599-607</pages><issn>0862-7940</issn><eissn>1572-9109</eissn><abstract>Let T be a tree with n vertices. To each edge of T we assign a weight which is a positive definite matrix of some fixed order, say, s . Let D ij denote the sum of all the weights lying in the path connecting the vertices i and j of T . We now say that D ij is the distance between i and j . Define D ≔ [ D ij ], where D ii is the s × s null matrix and for i ≠ j, D ij is the distance between i and j . Let G be an arbitrary connected weighted graph with n vertices, where each weight is a positive definite matrix of order s . If i and j are adjacent, then define L ij ≔ − W ij −1 , where W ij is the weight of the edge ( i, j ). Define L i i = ∑ i ≠ j j = 1 n W i j − 1 . The Laplacian of G is now the ns × ns block matrix L ≔ [ L ij ]. In this paper, we first note that D −1 − L is always nonsingular and then we prove that D and its perturbation ( D −1 − L ) −1 have many interesting properties in common.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.21136/AM.2020.0362-19</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0862-7940
ispartof Applications of Mathematics, 2020-10, Vol.65 (5), p.599-607
issn 0862-7940
1572-9109
language eng
recordid cdi_proquest_journals_2450403027
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerLink Journals - AutoHoldings
subjects Analysis
Apexes
Applications of Mathematics
Classical and Continuum Physics
Graph theory
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Matrix methods
Optimization
Perturbation
Theoretical
Weight
title Distance Matrices Perturbed by Laplacians
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A06%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distance%20Matrices%20Perturbed%20by%20Laplacians&rft.jtitle=Applications%20of%20Mathematics&rft.au=Ramamurthy,%20Balaji&rft.date=2020-10-01&rft.volume=65&rft.issue=5&rft.spage=599&rft.epage=607&rft.pages=599-607&rft.issn=0862-7940&rft.eissn=1572-9109&rft_id=info:doi/10.21136/AM.2020.0362-19&rft_dat=%3Cproquest_cross%3E2450403027%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450403027&rft_id=info:pmid/&rfr_iscdi=true