Subclass of analytic functions associated with Poisson distribution series
In this paper, we find the necessary and sufficient conditions, inclusion relations for Poisson distribution series K ( m , z ) = z + ∑ n = 2 ∞ m n - 1 ( n - 1 ) ! e - m z n belonging to a subclass TS ( λ , α , β ) of analytic functions with negative coefficients. Further, we consider the integral o...
Gespeichert in:
Veröffentlicht in: | Afrika mathematica 2020-11, Vol.31 (7-8), p.1167-1173 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1173 |
---|---|
container_issue | 7-8 |
container_start_page | 1167 |
container_title | Afrika mathematica |
container_volume | 31 |
creator | Frasin, B. A. Gharaibeh, Mohammed M. |
description | In this paper, we find the necessary and sufficient conditions, inclusion relations for Poisson distribution series
K
(
m
,
z
)
=
z
+
∑
n
=
2
∞
m
n
-
1
(
n
-
1
)
!
e
-
m
z
n
belonging to a subclass
TS
(
λ
,
α
,
β
)
of analytic functions with negative coefficients. Further, we consider the integral operator
G
(
m
,
z
)
=
∫
0
z
F
(
m
,
t
)
t
d
t
belonging to the above class. |
doi_str_mv | 10.1007/s13370-020-00788-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450402964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450402964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b879d05739597c1f0ca6ae9ece9a7d8b512bc8a864ed250d99e30f204309433a3</originalsourceid><addsrcrecordid>eNp9kFtLxDAQhYMouOj-AZ8CPlcnlzbNoyxeWVBQn0OappplbddMiuz-erNW8M2BYWDmO4fhEHLG4IIBqEtkQigogOcGVdfF7oDMONNQqKqqD8mMAeOFllAekzniCnLJilWlmJGH57Fxa4tIh47a3q63KTjajb1LYeiR5svggk2-pV8hvdOnIeRNT9uAKYZm3FMUfQweT8lRZ9fo57_zhLzeXL8s7orl4-394mpZOMF0Kppa6RZKJXSplWMdOFtZr73z2qq2bkrGG1fbupK-5SW0WnsBHQcpQEshrDgh55PvJg6fo8dkVsMY8-touCxBAteVzBSfKBcHxOg7s4nhw8atYWD2sZkpNpNjMz-xmV0WiUmEGe7ffPyz_kf1DTLfcNk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450402964</pqid></control><display><type>article</type><title>Subclass of analytic functions associated with Poisson distribution series</title><source>SpringerLink Journals - AutoHoldings</source><creator>Frasin, B. A. ; Gharaibeh, Mohammed M.</creator><creatorcontrib>Frasin, B. A. ; Gharaibeh, Mohammed M.</creatorcontrib><description>In this paper, we find the necessary and sufficient conditions, inclusion relations for Poisson distribution series
K
(
m
,
z
)
=
z
+
∑
n
=
2
∞
m
n
-
1
(
n
-
1
)
!
e
-
m
z
n
belonging to a subclass
TS
(
λ
,
α
,
β
)
of analytic functions with negative coefficients. Further, we consider the integral operator
G
(
m
,
z
)
=
∫
0
z
F
(
m
,
t
)
t
d
t
belonging to the above class.</description><identifier>ISSN: 1012-9405</identifier><identifier>EISSN: 2190-7668</identifier><identifier>DOI: 10.1007/s13370-020-00788-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytic functions ; Applications of Mathematics ; History of Mathematical Sciences ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Mathematics Education ; Operators (mathematics) ; Poisson distribution</subject><ispartof>Afrika mathematica, 2020-11, Vol.31 (7-8), p.1167-1173</ispartof><rights>African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2020</rights><rights>African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b879d05739597c1f0ca6ae9ece9a7d8b512bc8a864ed250d99e30f204309433a3</citedby><cites>FETCH-LOGICAL-c319t-b879d05739597c1f0ca6ae9ece9a7d8b512bc8a864ed250d99e30f204309433a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13370-020-00788-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13370-020-00788-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Frasin, B. A.</creatorcontrib><creatorcontrib>Gharaibeh, Mohammed M.</creatorcontrib><title>Subclass of analytic functions associated with Poisson distribution series</title><title>Afrika mathematica</title><addtitle>Afr. Mat</addtitle><description>In this paper, we find the necessary and sufficient conditions, inclusion relations for Poisson distribution series
K
(
m
,
z
)
=
z
+
∑
n
=
2
∞
m
n
-
1
(
n
-
1
)
!
e
-
m
z
n
belonging to a subclass
TS
(
λ
,
α
,
β
)
of analytic functions with negative coefficients. Further, we consider the integral operator
G
(
m
,
z
)
=
∫
0
z
F
(
m
,
t
)
t
d
t
belonging to the above class.</description><subject>Analytic functions</subject><subject>Applications of Mathematics</subject><subject>History of Mathematical Sciences</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics Education</subject><subject>Operators (mathematics)</subject><subject>Poisson distribution</subject><issn>1012-9405</issn><issn>2190-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kFtLxDAQhYMouOj-AZ8CPlcnlzbNoyxeWVBQn0OappplbddMiuz-erNW8M2BYWDmO4fhEHLG4IIBqEtkQigogOcGVdfF7oDMONNQqKqqD8mMAeOFllAekzniCnLJilWlmJGH57Fxa4tIh47a3q63KTjajb1LYeiR5svggk2-pV8hvdOnIeRNT9uAKYZm3FMUfQweT8lRZ9fo57_zhLzeXL8s7orl4-394mpZOMF0Kppa6RZKJXSplWMdOFtZr73z2qq2bkrGG1fbupK-5SW0WnsBHQcpQEshrDgh55PvJg6fo8dkVsMY8-touCxBAteVzBSfKBcHxOg7s4nhw8atYWD2sZkpNpNjMz-xmV0WiUmEGe7ffPyz_kf1DTLfcNk</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Frasin, B. A.</creator><creator>Gharaibeh, Mohammed M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201101</creationdate><title>Subclass of analytic functions associated with Poisson distribution series</title><author>Frasin, B. A. ; Gharaibeh, Mohammed M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b879d05739597c1f0ca6ae9ece9a7d8b512bc8a864ed250d99e30f204309433a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytic functions</topic><topic>Applications of Mathematics</topic><topic>History of Mathematical Sciences</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics Education</topic><topic>Operators (mathematics)</topic><topic>Poisson distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frasin, B. A.</creatorcontrib><creatorcontrib>Gharaibeh, Mohammed M.</creatorcontrib><collection>CrossRef</collection><jtitle>Afrika mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frasin, B. A.</au><au>Gharaibeh, Mohammed M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subclass of analytic functions associated with Poisson distribution series</atitle><jtitle>Afrika mathematica</jtitle><stitle>Afr. Mat</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>31</volume><issue>7-8</issue><spage>1167</spage><epage>1173</epage><pages>1167-1173</pages><issn>1012-9405</issn><eissn>2190-7668</eissn><abstract>In this paper, we find the necessary and sufficient conditions, inclusion relations for Poisson distribution series
K
(
m
,
z
)
=
z
+
∑
n
=
2
∞
m
n
-
1
(
n
-
1
)
!
e
-
m
z
n
belonging to a subclass
TS
(
λ
,
α
,
β
)
of analytic functions with negative coefficients. Further, we consider the integral operator
G
(
m
,
z
)
=
∫
0
z
F
(
m
,
t
)
t
d
t
belonging to the above class.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13370-020-00788-z</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1012-9405 |
ispartof | Afrika mathematica, 2020-11, Vol.31 (7-8), p.1167-1173 |
issn | 1012-9405 2190-7668 |
language | eng |
recordid | cdi_proquest_journals_2450402964 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analytic functions Applications of Mathematics History of Mathematical Sciences Mathematical analysis Mathematics Mathematics and Statistics Mathematics Education Operators (mathematics) Poisson distribution |
title | Subclass of analytic functions associated with Poisson distribution series |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A30%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subclass%20of%20analytic%20functions%20associated%20with%20Poisson%20distribution%20series&rft.jtitle=Afrika%20mathematica&rft.au=Frasin,%20B.%20A.&rft.date=2020-11-01&rft.volume=31&rft.issue=7-8&rft.spage=1167&rft.epage=1173&rft.pages=1167-1173&rft.issn=1012-9405&rft.eissn=2190-7668&rft_id=info:doi/10.1007/s13370-020-00788-z&rft_dat=%3Cproquest_cross%3E2450402964%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450402964&rft_id=info:pmid/&rfr_iscdi=true |