Subclass of analytic functions associated with Poisson distribution series

In this paper, we find the necessary and sufficient conditions, inclusion relations for Poisson distribution series K ( m , z ) = z + ∑ n = 2 ∞ m n - 1 ( n - 1 ) ! e - m z n belonging to a subclass TS ( λ , α , β ) of analytic functions with negative coefficients. Further, we consider the integral o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Afrika mathematica 2020-11, Vol.31 (7-8), p.1167-1173
Hauptverfasser: Frasin, B. A., Gharaibeh, Mohammed M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1173
container_issue 7-8
container_start_page 1167
container_title Afrika mathematica
container_volume 31
creator Frasin, B. A.
Gharaibeh, Mohammed M.
description In this paper, we find the necessary and sufficient conditions, inclusion relations for Poisson distribution series K ( m , z ) = z + ∑ n = 2 ∞ m n - 1 ( n - 1 ) ! e - m z n belonging to a subclass TS ( λ , α , β ) of analytic functions with negative coefficients. Further, we consider the integral operator G ( m , z ) = ∫ 0 z F ( m , t ) t d t belonging to the above class.
doi_str_mv 10.1007/s13370-020-00788-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450402964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450402964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b879d05739597c1f0ca6ae9ece9a7d8b512bc8a864ed250d99e30f204309433a3</originalsourceid><addsrcrecordid>eNp9kFtLxDAQhYMouOj-AZ8CPlcnlzbNoyxeWVBQn0OappplbddMiuz-erNW8M2BYWDmO4fhEHLG4IIBqEtkQigogOcGVdfF7oDMONNQqKqqD8mMAeOFllAekzniCnLJilWlmJGH57Fxa4tIh47a3q63KTjajb1LYeiR5svggk2-pV8hvdOnIeRNT9uAKYZm3FMUfQweT8lRZ9fo57_zhLzeXL8s7orl4-394mpZOMF0Kppa6RZKJXSplWMdOFtZr73z2qq2bkrGG1fbupK-5SW0WnsBHQcpQEshrDgh55PvJg6fo8dkVsMY8-touCxBAteVzBSfKBcHxOg7s4nhw8atYWD2sZkpNpNjMz-xmV0WiUmEGe7ffPyz_kf1DTLfcNk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450402964</pqid></control><display><type>article</type><title>Subclass of analytic functions associated with Poisson distribution series</title><source>SpringerLink Journals - AutoHoldings</source><creator>Frasin, B. A. ; Gharaibeh, Mohammed M.</creator><creatorcontrib>Frasin, B. A. ; Gharaibeh, Mohammed M.</creatorcontrib><description>In this paper, we find the necessary and sufficient conditions, inclusion relations for Poisson distribution series K ( m , z ) = z + ∑ n = 2 ∞ m n - 1 ( n - 1 ) ! e - m z n belonging to a subclass TS ( λ , α , β ) of analytic functions with negative coefficients. Further, we consider the integral operator G ( m , z ) = ∫ 0 z F ( m , t ) t d t belonging to the above class.</description><identifier>ISSN: 1012-9405</identifier><identifier>EISSN: 2190-7668</identifier><identifier>DOI: 10.1007/s13370-020-00788-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytic functions ; Applications of Mathematics ; History of Mathematical Sciences ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Mathematics Education ; Operators (mathematics) ; Poisson distribution</subject><ispartof>Afrika mathematica, 2020-11, Vol.31 (7-8), p.1167-1173</ispartof><rights>African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2020</rights><rights>African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b879d05739597c1f0ca6ae9ece9a7d8b512bc8a864ed250d99e30f204309433a3</citedby><cites>FETCH-LOGICAL-c319t-b879d05739597c1f0ca6ae9ece9a7d8b512bc8a864ed250d99e30f204309433a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13370-020-00788-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13370-020-00788-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Frasin, B. A.</creatorcontrib><creatorcontrib>Gharaibeh, Mohammed M.</creatorcontrib><title>Subclass of analytic functions associated with Poisson distribution series</title><title>Afrika mathematica</title><addtitle>Afr. Mat</addtitle><description>In this paper, we find the necessary and sufficient conditions, inclusion relations for Poisson distribution series K ( m , z ) = z + ∑ n = 2 ∞ m n - 1 ( n - 1 ) ! e - m z n belonging to a subclass TS ( λ , α , β ) of analytic functions with negative coefficients. Further, we consider the integral operator G ( m , z ) = ∫ 0 z F ( m , t ) t d t belonging to the above class.</description><subject>Analytic functions</subject><subject>Applications of Mathematics</subject><subject>History of Mathematical Sciences</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics Education</subject><subject>Operators (mathematics)</subject><subject>Poisson distribution</subject><issn>1012-9405</issn><issn>2190-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kFtLxDAQhYMouOj-AZ8CPlcnlzbNoyxeWVBQn0OappplbddMiuz-erNW8M2BYWDmO4fhEHLG4IIBqEtkQigogOcGVdfF7oDMONNQqKqqD8mMAeOFllAekzniCnLJilWlmJGH57Fxa4tIh47a3q63KTjajb1LYeiR5svggk2-pV8hvdOnIeRNT9uAKYZm3FMUfQweT8lRZ9fo57_zhLzeXL8s7orl4-394mpZOMF0Kppa6RZKJXSplWMdOFtZr73z2qq2bkrGG1fbupK-5SW0WnsBHQcpQEshrDgh55PvJg6fo8dkVsMY8-touCxBAteVzBSfKBcHxOg7s4nhw8atYWD2sZkpNpNjMz-xmV0WiUmEGe7ffPyz_kf1DTLfcNk</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Frasin, B. A.</creator><creator>Gharaibeh, Mohammed M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201101</creationdate><title>Subclass of analytic functions associated with Poisson distribution series</title><author>Frasin, B. A. ; Gharaibeh, Mohammed M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b879d05739597c1f0ca6ae9ece9a7d8b512bc8a864ed250d99e30f204309433a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytic functions</topic><topic>Applications of Mathematics</topic><topic>History of Mathematical Sciences</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics Education</topic><topic>Operators (mathematics)</topic><topic>Poisson distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frasin, B. A.</creatorcontrib><creatorcontrib>Gharaibeh, Mohammed M.</creatorcontrib><collection>CrossRef</collection><jtitle>Afrika mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frasin, B. A.</au><au>Gharaibeh, Mohammed M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subclass of analytic functions associated with Poisson distribution series</atitle><jtitle>Afrika mathematica</jtitle><stitle>Afr. Mat</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>31</volume><issue>7-8</issue><spage>1167</spage><epage>1173</epage><pages>1167-1173</pages><issn>1012-9405</issn><eissn>2190-7668</eissn><abstract>In this paper, we find the necessary and sufficient conditions, inclusion relations for Poisson distribution series K ( m , z ) = z + ∑ n = 2 ∞ m n - 1 ( n - 1 ) ! e - m z n belonging to a subclass TS ( λ , α , β ) of analytic functions with negative coefficients. Further, we consider the integral operator G ( m , z ) = ∫ 0 z F ( m , t ) t d t belonging to the above class.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13370-020-00788-z</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1012-9405
ispartof Afrika mathematica, 2020-11, Vol.31 (7-8), p.1167-1173
issn 1012-9405
2190-7668
language eng
recordid cdi_proquest_journals_2450402964
source SpringerLink Journals - AutoHoldings
subjects Analytic functions
Applications of Mathematics
History of Mathematical Sciences
Mathematical analysis
Mathematics
Mathematics and Statistics
Mathematics Education
Operators (mathematics)
Poisson distribution
title Subclass of analytic functions associated with Poisson distribution series
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A30%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subclass%20of%20analytic%20functions%20associated%20with%20Poisson%20distribution%20series&rft.jtitle=Afrika%20mathematica&rft.au=Frasin,%20B.%20A.&rft.date=2020-11-01&rft.volume=31&rft.issue=7-8&rft.spage=1167&rft.epage=1173&rft.pages=1167-1173&rft.issn=1012-9405&rft.eissn=2190-7668&rft_id=info:doi/10.1007/s13370-020-00788-z&rft_dat=%3Cproquest_cross%3E2450402964%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450402964&rft_id=info:pmid/&rfr_iscdi=true