Topological Indices of the Non-commuting Graph for Generalised Quaternion Group
A topological index is a numerical value associated with chemical constitution for correlation of chemical structure with various physical properties and chemical reactivity. It is calculated from a graph representing a molecule. Meanwhile, the non-commuting graph, Γ G of G , is defined as a graph o...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Malaysian Mathematical Sciences Society 2020-09, Vol.43 (5), p.3361-3367 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3367 |
---|---|
container_issue | 5 |
container_start_page | 3361 |
container_title | Bulletin of the Malaysian Mathematical Sciences Society |
container_volume | 43 |
creator | Sarmin, Nor Haniza Alimon, Nur Idayu Erfanian, Ahmad |
description | A topological index is a numerical value associated with chemical constitution for correlation of chemical structure with various physical properties and chemical reactivity. It is calculated from a graph representing a molecule. Meanwhile, the non-commuting graph,
Γ
G
of
G
, is defined as a graph of vertex set whose vertices are non-central elements and two distinct vertices are joined by an edge if and only if they do not commute. The main objective of this article is to determine the general formula of some topological indices, namely Wiener index, first Zagreb index and second Zagreb index for the non-commuting graph associated with generalised quaternion group in terms of
n
. |
doi_str_mv | 10.1007/s40840-019-00872-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450351192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450351192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-56e286c4afa899162865f8030abac8856c627e9f67bde0958dcfd82b0cb9dde53</originalsourceid><addsrcrecordid>eNp9kEFLwzAUx4MoOOa-gKeA5-hL2qTpUYbOwXAI8xzSNNk6uqYm7cF9eqMVvPkujwe____BD6FbCvcUoHiIOcgcCNCSAMiCkfMFmjEqgeQMxCWaAWWCiAL4NVrEeIQ0XDDB6Axtd773rd83Rrd43dWNsRF7h4eDxa--I8afTuPQdHu8Cro_YOcDXtnOBt020db4bdSDDV3juwT4sb9BV0630S5-9xy9Pz_tli9ks12tl48bYjJaDoQLy6QwuXZaliUV6eBOQga60kZKLoxghS2dKKraQsllbVwtWQWmKuva8myO7qbePviP0cZBHf0YuvRSsZxDxiktWaLYRJngYwzWqT40Jx0-FQX17U5N7lRyp37cqXMKZVMoJrjb2_BX_U_qC9a_cjU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450351192</pqid></control><display><type>article</type><title>Topological Indices of the Non-commuting Graph for Generalised Quaternion Group</title><source>SpringerNature Journals</source><creator>Sarmin, Nor Haniza ; Alimon, Nur Idayu ; Erfanian, Ahmad</creator><creatorcontrib>Sarmin, Nor Haniza ; Alimon, Nur Idayu ; Erfanian, Ahmad</creatorcontrib><description>A topological index is a numerical value associated with chemical constitution for correlation of chemical structure with various physical properties and chemical reactivity. It is calculated from a graph representing a molecule. Meanwhile, the non-commuting graph,
Γ
G
of
G
, is defined as a graph of vertex set whose vertices are non-central elements and two distinct vertices are joined by an edge if and only if they do not commute. The main objective of this article is to determine the general formula of some topological indices, namely Wiener index, first Zagreb index and second Zagreb index for the non-commuting graph associated with generalised quaternion group in terms of
n
.</description><identifier>ISSN: 0126-6705</identifier><identifier>EISSN: 2180-4206</identifier><identifier>DOI: 10.1007/s40840-019-00872-z</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Apexes ; Applications of Mathematics ; Commuting ; Graph theory ; Graphical representations ; Mathematics ; Mathematics and Statistics ; Physical properties ; Quaternions ; Topology</subject><ispartof>Bulletin of the Malaysian Mathematical Sciences Society, 2020-09, Vol.43 (5), p.3361-3367</ispartof><rights>Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2019</rights><rights>Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-56e286c4afa899162865f8030abac8856c627e9f67bde0958dcfd82b0cb9dde53</citedby><cites>FETCH-LOGICAL-c319t-56e286c4afa899162865f8030abac8856c627e9f67bde0958dcfd82b0cb9dde53</cites><orcidid>0000-0003-4291-5746</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40840-019-00872-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40840-019-00872-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Sarmin, Nor Haniza</creatorcontrib><creatorcontrib>Alimon, Nur Idayu</creatorcontrib><creatorcontrib>Erfanian, Ahmad</creatorcontrib><title>Topological Indices of the Non-commuting Graph for Generalised Quaternion Group</title><title>Bulletin of the Malaysian Mathematical Sciences Society</title><addtitle>Bull. Malays. Math. Sci. Soc</addtitle><description>A topological index is a numerical value associated with chemical constitution for correlation of chemical structure with various physical properties and chemical reactivity. It is calculated from a graph representing a molecule. Meanwhile, the non-commuting graph,
Γ
G
of
G
, is defined as a graph of vertex set whose vertices are non-central elements and two distinct vertices are joined by an edge if and only if they do not commute. The main objective of this article is to determine the general formula of some topological indices, namely Wiener index, first Zagreb index and second Zagreb index for the non-commuting graph associated with generalised quaternion group in terms of
n
.</description><subject>Apexes</subject><subject>Applications of Mathematics</subject><subject>Commuting</subject><subject>Graph theory</subject><subject>Graphical representations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Physical properties</subject><subject>Quaternions</subject><subject>Topology</subject><issn>0126-6705</issn><issn>2180-4206</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAUx4MoOOa-gKeA5-hL2qTpUYbOwXAI8xzSNNk6uqYm7cF9eqMVvPkujwe____BD6FbCvcUoHiIOcgcCNCSAMiCkfMFmjEqgeQMxCWaAWWCiAL4NVrEeIQ0XDDB6Axtd773rd83Rrd43dWNsRF7h4eDxa--I8afTuPQdHu8Cro_YOcDXtnOBt020db4bdSDDV3juwT4sb9BV0630S5-9xy9Pz_tli9ks12tl48bYjJaDoQLy6QwuXZaliUV6eBOQga60kZKLoxghS2dKKraQsllbVwtWQWmKuva8myO7qbePviP0cZBHf0YuvRSsZxDxiktWaLYRJngYwzWqT40Jx0-FQX17U5N7lRyp37cqXMKZVMoJrjb2_BX_U_qC9a_cjU</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Sarmin, Nor Haniza</creator><creator>Alimon, Nur Idayu</creator><creator>Erfanian, Ahmad</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4291-5746</orcidid></search><sort><creationdate>20200901</creationdate><title>Topological Indices of the Non-commuting Graph for Generalised Quaternion Group</title><author>Sarmin, Nor Haniza ; Alimon, Nur Idayu ; Erfanian, Ahmad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-56e286c4afa899162865f8030abac8856c627e9f67bde0958dcfd82b0cb9dde53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Apexes</topic><topic>Applications of Mathematics</topic><topic>Commuting</topic><topic>Graph theory</topic><topic>Graphical representations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Physical properties</topic><topic>Quaternions</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarmin, Nor Haniza</creatorcontrib><creatorcontrib>Alimon, Nur Idayu</creatorcontrib><creatorcontrib>Erfanian, Ahmad</creatorcontrib><collection>CrossRef</collection><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarmin, Nor Haniza</au><au>Alimon, Nur Idayu</au><au>Erfanian, Ahmad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological Indices of the Non-commuting Graph for Generalised Quaternion Group</atitle><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle><stitle>Bull. Malays. Math. Sci. Soc</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>43</volume><issue>5</issue><spage>3361</spage><epage>3367</epage><pages>3361-3367</pages><issn>0126-6705</issn><eissn>2180-4206</eissn><abstract>A topological index is a numerical value associated with chemical constitution for correlation of chemical structure with various physical properties and chemical reactivity. It is calculated from a graph representing a molecule. Meanwhile, the non-commuting graph,
Γ
G
of
G
, is defined as a graph of vertex set whose vertices are non-central elements and two distinct vertices are joined by an edge if and only if they do not commute. The main objective of this article is to determine the general formula of some topological indices, namely Wiener index, first Zagreb index and second Zagreb index for the non-commuting graph associated with generalised quaternion group in terms of
n
.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s40840-019-00872-z</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4291-5746</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0126-6705 |
ispartof | Bulletin of the Malaysian Mathematical Sciences Society, 2020-09, Vol.43 (5), p.3361-3367 |
issn | 0126-6705 2180-4206 |
language | eng |
recordid | cdi_proquest_journals_2450351192 |
source | SpringerNature Journals |
subjects | Apexes Applications of Mathematics Commuting Graph theory Graphical representations Mathematics Mathematics and Statistics Physical properties Quaternions Topology |
title | Topological Indices of the Non-commuting Graph for Generalised Quaternion Group |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A33%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20Indices%20of%20the%20Non-commuting%20Graph%20for%20Generalised%20Quaternion%20Group&rft.jtitle=Bulletin%20of%20the%20Malaysian%20Mathematical%20Sciences%20Society&rft.au=Sarmin,%20Nor%20Haniza&rft.date=2020-09-01&rft.volume=43&rft.issue=5&rft.spage=3361&rft.epage=3367&rft.pages=3361-3367&rft.issn=0126-6705&rft.eissn=2180-4206&rft_id=info:doi/10.1007/s40840-019-00872-z&rft_dat=%3Cproquest_cross%3E2450351192%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450351192&rft_id=info:pmid/&rfr_iscdi=true |