Topological Indices of the Non-commuting Graph for Generalised Quaternion Group

A topological index is a numerical value associated with chemical constitution for correlation of chemical structure with various physical properties and chemical reactivity. It is calculated from a graph representing a molecule. Meanwhile, the non-commuting graph, Γ G of G , is defined as a graph o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Malaysian Mathematical Sciences Society 2020-09, Vol.43 (5), p.3361-3367
Hauptverfasser: Sarmin, Nor Haniza, Alimon, Nur Idayu, Erfanian, Ahmad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3367
container_issue 5
container_start_page 3361
container_title Bulletin of the Malaysian Mathematical Sciences Society
container_volume 43
creator Sarmin, Nor Haniza
Alimon, Nur Idayu
Erfanian, Ahmad
description A topological index is a numerical value associated with chemical constitution for correlation of chemical structure with various physical properties and chemical reactivity. It is calculated from a graph representing a molecule. Meanwhile, the non-commuting graph, Γ G of G , is defined as a graph of vertex set whose vertices are non-central elements and two distinct vertices are joined by an edge if and only if they do not commute. The main objective of this article is to determine the general formula of some topological indices, namely Wiener index, first Zagreb index and second Zagreb index for the non-commuting graph associated with generalised quaternion group in terms of n .
doi_str_mv 10.1007/s40840-019-00872-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450351192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450351192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-56e286c4afa899162865f8030abac8856c627e9f67bde0958dcfd82b0cb9dde53</originalsourceid><addsrcrecordid>eNp9kEFLwzAUx4MoOOa-gKeA5-hL2qTpUYbOwXAI8xzSNNk6uqYm7cF9eqMVvPkujwe____BD6FbCvcUoHiIOcgcCNCSAMiCkfMFmjEqgeQMxCWaAWWCiAL4NVrEeIQ0XDDB6Axtd773rd83Rrd43dWNsRF7h4eDxa--I8afTuPQdHu8Cro_YOcDXtnOBt020db4bdSDDV3juwT4sb9BV0630S5-9xy9Pz_tli9ks12tl48bYjJaDoQLy6QwuXZaliUV6eBOQga60kZKLoxghS2dKKraQsllbVwtWQWmKuva8myO7qbePviP0cZBHf0YuvRSsZxDxiktWaLYRJngYwzWqT40Jx0-FQX17U5N7lRyp37cqXMKZVMoJrjb2_BX_U_qC9a_cjU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450351192</pqid></control><display><type>article</type><title>Topological Indices of the Non-commuting Graph for Generalised Quaternion Group</title><source>SpringerNature Journals</source><creator>Sarmin, Nor Haniza ; Alimon, Nur Idayu ; Erfanian, Ahmad</creator><creatorcontrib>Sarmin, Nor Haniza ; Alimon, Nur Idayu ; Erfanian, Ahmad</creatorcontrib><description>A topological index is a numerical value associated with chemical constitution for correlation of chemical structure with various physical properties and chemical reactivity. It is calculated from a graph representing a molecule. Meanwhile, the non-commuting graph, Γ G of G , is defined as a graph of vertex set whose vertices are non-central elements and two distinct vertices are joined by an edge if and only if they do not commute. The main objective of this article is to determine the general formula of some topological indices, namely Wiener index, first Zagreb index and second Zagreb index for the non-commuting graph associated with generalised quaternion group in terms of n .</description><identifier>ISSN: 0126-6705</identifier><identifier>EISSN: 2180-4206</identifier><identifier>DOI: 10.1007/s40840-019-00872-z</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Apexes ; Applications of Mathematics ; Commuting ; Graph theory ; Graphical representations ; Mathematics ; Mathematics and Statistics ; Physical properties ; Quaternions ; Topology</subject><ispartof>Bulletin of the Malaysian Mathematical Sciences Society, 2020-09, Vol.43 (5), p.3361-3367</ispartof><rights>Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2019</rights><rights>Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-56e286c4afa899162865f8030abac8856c627e9f67bde0958dcfd82b0cb9dde53</citedby><cites>FETCH-LOGICAL-c319t-56e286c4afa899162865f8030abac8856c627e9f67bde0958dcfd82b0cb9dde53</cites><orcidid>0000-0003-4291-5746</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40840-019-00872-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40840-019-00872-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Sarmin, Nor Haniza</creatorcontrib><creatorcontrib>Alimon, Nur Idayu</creatorcontrib><creatorcontrib>Erfanian, Ahmad</creatorcontrib><title>Topological Indices of the Non-commuting Graph for Generalised Quaternion Group</title><title>Bulletin of the Malaysian Mathematical Sciences Society</title><addtitle>Bull. Malays. Math. Sci. Soc</addtitle><description>A topological index is a numerical value associated with chemical constitution for correlation of chemical structure with various physical properties and chemical reactivity. It is calculated from a graph representing a molecule. Meanwhile, the non-commuting graph, Γ G of G , is defined as a graph of vertex set whose vertices are non-central elements and two distinct vertices are joined by an edge if and only if they do not commute. The main objective of this article is to determine the general formula of some topological indices, namely Wiener index, first Zagreb index and second Zagreb index for the non-commuting graph associated with generalised quaternion group in terms of n .</description><subject>Apexes</subject><subject>Applications of Mathematics</subject><subject>Commuting</subject><subject>Graph theory</subject><subject>Graphical representations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Physical properties</subject><subject>Quaternions</subject><subject>Topology</subject><issn>0126-6705</issn><issn>2180-4206</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAUx4MoOOa-gKeA5-hL2qTpUYbOwXAI8xzSNNk6uqYm7cF9eqMVvPkujwe____BD6FbCvcUoHiIOcgcCNCSAMiCkfMFmjEqgeQMxCWaAWWCiAL4NVrEeIQ0XDDB6Axtd773rd83Rrd43dWNsRF7h4eDxa--I8afTuPQdHu8Cro_YOcDXtnOBt020db4bdSDDV3juwT4sb9BV0630S5-9xy9Pz_tli9ks12tl48bYjJaDoQLy6QwuXZaliUV6eBOQga60kZKLoxghS2dKKraQsllbVwtWQWmKuva8myO7qbePviP0cZBHf0YuvRSsZxDxiktWaLYRJngYwzWqT40Jx0-FQX17U5N7lRyp37cqXMKZVMoJrjb2_BX_U_qC9a_cjU</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Sarmin, Nor Haniza</creator><creator>Alimon, Nur Idayu</creator><creator>Erfanian, Ahmad</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4291-5746</orcidid></search><sort><creationdate>20200901</creationdate><title>Topological Indices of the Non-commuting Graph for Generalised Quaternion Group</title><author>Sarmin, Nor Haniza ; Alimon, Nur Idayu ; Erfanian, Ahmad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-56e286c4afa899162865f8030abac8856c627e9f67bde0958dcfd82b0cb9dde53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Apexes</topic><topic>Applications of Mathematics</topic><topic>Commuting</topic><topic>Graph theory</topic><topic>Graphical representations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Physical properties</topic><topic>Quaternions</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarmin, Nor Haniza</creatorcontrib><creatorcontrib>Alimon, Nur Idayu</creatorcontrib><creatorcontrib>Erfanian, Ahmad</creatorcontrib><collection>CrossRef</collection><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarmin, Nor Haniza</au><au>Alimon, Nur Idayu</au><au>Erfanian, Ahmad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological Indices of the Non-commuting Graph for Generalised Quaternion Group</atitle><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle><stitle>Bull. Malays. Math. Sci. Soc</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>43</volume><issue>5</issue><spage>3361</spage><epage>3367</epage><pages>3361-3367</pages><issn>0126-6705</issn><eissn>2180-4206</eissn><abstract>A topological index is a numerical value associated with chemical constitution for correlation of chemical structure with various physical properties and chemical reactivity. It is calculated from a graph representing a molecule. Meanwhile, the non-commuting graph, Γ G of G , is defined as a graph of vertex set whose vertices are non-central elements and two distinct vertices are joined by an edge if and only if they do not commute. The main objective of this article is to determine the general formula of some topological indices, namely Wiener index, first Zagreb index and second Zagreb index for the non-commuting graph associated with generalised quaternion group in terms of n .</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s40840-019-00872-z</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4291-5746</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0126-6705
ispartof Bulletin of the Malaysian Mathematical Sciences Society, 2020-09, Vol.43 (5), p.3361-3367
issn 0126-6705
2180-4206
language eng
recordid cdi_proquest_journals_2450351192
source SpringerNature Journals
subjects Apexes
Applications of Mathematics
Commuting
Graph theory
Graphical representations
Mathematics
Mathematics and Statistics
Physical properties
Quaternions
Topology
title Topological Indices of the Non-commuting Graph for Generalised Quaternion Group
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A33%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20Indices%20of%20the%20Non-commuting%20Graph%20for%20Generalised%20Quaternion%20Group&rft.jtitle=Bulletin%20of%20the%20Malaysian%20Mathematical%20Sciences%20Society&rft.au=Sarmin,%20Nor%20Haniza&rft.date=2020-09-01&rft.volume=43&rft.issue=5&rft.spage=3361&rft.epage=3367&rft.pages=3361-3367&rft.issn=0126-6705&rft.eissn=2180-4206&rft_id=info:doi/10.1007/s40840-019-00872-z&rft_dat=%3Cproquest_cross%3E2450351192%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450351192&rft_id=info:pmid/&rfr_iscdi=true