Parallel iterative stabilized finite element methods based on the quadratic equal-order elements for incompressible flows

Combining the quadratic equal-order stabilized method with the approach of local and parallel finite element computations and classical iterative methods for the discretization of the steady-state Navier–Stokes equations, three parallel iterative stabilized finite element methods based on fully over...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calcolo 2020-12, Vol.57 (4), Article 34
Hauptverfasser: Zheng, Bo, Shang, Yueqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Calcolo
container_volume 57
creator Zheng, Bo
Shang, Yueqiang
description Combining the quadratic equal-order stabilized method with the approach of local and parallel finite element computations and classical iterative methods for the discretization of the steady-state Navier–Stokes equations, three parallel iterative stabilized finite element methods based on fully overlapping domain decomposition are proposed and compared in this paper. In these methods, each processor independently computes an approximate solution in its own subdomain using a global composite mesh that is fine around its own subdomain and coarse elsewhere, making the methods be easy to implement based on existing codes and have low communication complexity. Under some (strong) uniqueness conditions, stability and convergence theory of the parallel iterative stabilized methods are derived. Numerical tests are also performed to demonstrate the stability, convergence orders and high efficiency of the proposed methods.
doi_str_mv 10.1007/s10092-020-00382-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450341754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450341754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-487371eaa8628b28f06e467e2c3f60446e940712d5137236c0432350a3187f653</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3TysdntUYpfUNCDnkN2d9amZDdtslX015taxZuXyUwyzxt4CDnncMkByquU60wwEMAAZCWYPiATzoVmhZLqkEwAoGKghTomJymt8lioSk3Ix5ON1nv01I0Y7ejekKbR1s67T2xp54Z8T9Fjj8NIexyXoU20tik_hoGOS6SbrW13ZEMxt56F2GL8RRLtQqRuaEK_jpiSqz3Szof3dEqOOusTnv2cU_Jye_M8v2eLx7uH-fWCNZLPRqaqUpYcra20qGpRdaBR6RJFIzsNSmmcKSi5aAsuSyF1A0oKWYCVvCo7XcgpudjnrmPYbDGNZhW2cchfGqEKkIqX2dGUiP1WE0NKETuzjq638cNwMDvFZq_YZMXmW7HRGZJ7KOXl4RXjX_Q_1BfFVn8r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450341754</pqid></control><display><type>article</type><title>Parallel iterative stabilized finite element methods based on the quadratic equal-order elements for incompressible flows</title><source>SpringerLink Journals</source><creator>Zheng, Bo ; Shang, Yueqiang</creator><creatorcontrib>Zheng, Bo ; Shang, Yueqiang</creatorcontrib><description>Combining the quadratic equal-order stabilized method with the approach of local and parallel finite element computations and classical iterative methods for the discretization of the steady-state Navier–Stokes equations, three parallel iterative stabilized finite element methods based on fully overlapping domain decomposition are proposed and compared in this paper. In these methods, each processor independently computes an approximate solution in its own subdomain using a global composite mesh that is fine around its own subdomain and coarse elsewhere, making the methods be easy to implement based on existing codes and have low communication complexity. Under some (strong) uniqueness conditions, stability and convergence theory of the parallel iterative stabilized methods are derived. Numerical tests are also performed to demonstrate the stability, convergence orders and high efficiency of the proposed methods.</description><identifier>ISSN: 0008-0624</identifier><identifier>EISSN: 1126-5434</identifier><identifier>DOI: 10.1007/s10092-020-00382-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Computational fluid dynamics ; Convergence ; Domain decomposition methods ; Finite element method ; Fluid flow ; Incompressible flow ; Iterative methods ; Mathematics ; Mathematics and Statistics ; Microprocessors ; Numerical Analysis ; Numerical methods ; Stability ; Theory of Computation</subject><ispartof>Calcolo, 2020-12, Vol.57 (4), Article 34</ispartof><rights>Istituto di Informatica e Telematica (IIT) 2020</rights><rights>Istituto di Informatica e Telematica (IIT) 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-487371eaa8628b28f06e467e2c3f60446e940712d5137236c0432350a3187f653</citedby><cites>FETCH-LOGICAL-c319t-487371eaa8628b28f06e467e2c3f60446e940712d5137236c0432350a3187f653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10092-020-00382-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10092-020-00382-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zheng, Bo</creatorcontrib><creatorcontrib>Shang, Yueqiang</creatorcontrib><title>Parallel iterative stabilized finite element methods based on the quadratic equal-order elements for incompressible flows</title><title>Calcolo</title><addtitle>Calcolo</addtitle><description>Combining the quadratic equal-order stabilized method with the approach of local and parallel finite element computations and classical iterative methods for the discretization of the steady-state Navier–Stokes equations, three parallel iterative stabilized finite element methods based on fully overlapping domain decomposition are proposed and compared in this paper. In these methods, each processor independently computes an approximate solution in its own subdomain using a global composite mesh that is fine around its own subdomain and coarse elsewhere, making the methods be easy to implement based on existing codes and have low communication complexity. Under some (strong) uniqueness conditions, stability and convergence theory of the parallel iterative stabilized methods are derived. Numerical tests are also performed to demonstrate the stability, convergence orders and high efficiency of the proposed methods.</description><subject>Computational fluid dynamics</subject><subject>Convergence</subject><subject>Domain decomposition methods</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Incompressible flow</subject><subject>Iterative methods</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Microprocessors</subject><subject>Numerical Analysis</subject><subject>Numerical methods</subject><subject>Stability</subject><subject>Theory of Computation</subject><issn>0008-0624</issn><issn>1126-5434</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3TysdntUYpfUNCDnkN2d9amZDdtslX015taxZuXyUwyzxt4CDnncMkByquU60wwEMAAZCWYPiATzoVmhZLqkEwAoGKghTomJymt8lioSk3Ix5ON1nv01I0Y7ejekKbR1s67T2xp54Z8T9Fjj8NIexyXoU20tik_hoGOS6SbrW13ZEMxt56F2GL8RRLtQqRuaEK_jpiSqz3Szof3dEqOOusTnv2cU_Jye_M8v2eLx7uH-fWCNZLPRqaqUpYcra20qGpRdaBR6RJFIzsNSmmcKSi5aAsuSyF1A0oKWYCVvCo7XcgpudjnrmPYbDGNZhW2cchfGqEKkIqX2dGUiP1WE0NKETuzjq638cNwMDvFZq_YZMXmW7HRGZJ7KOXl4RXjX_Q_1BfFVn8r</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Zheng, Bo</creator><creator>Shang, Yueqiang</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20201201</creationdate><title>Parallel iterative stabilized finite element methods based on the quadratic equal-order elements for incompressible flows</title><author>Zheng, Bo ; Shang, Yueqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-487371eaa8628b28f06e467e2c3f60446e940712d5137236c0432350a3187f653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational fluid dynamics</topic><topic>Convergence</topic><topic>Domain decomposition methods</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Incompressible flow</topic><topic>Iterative methods</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Microprocessors</topic><topic>Numerical Analysis</topic><topic>Numerical methods</topic><topic>Stability</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Bo</creatorcontrib><creatorcontrib>Shang, Yueqiang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Calcolo</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Bo</au><au>Shang, Yueqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallel iterative stabilized finite element methods based on the quadratic equal-order elements for incompressible flows</atitle><jtitle>Calcolo</jtitle><stitle>Calcolo</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>57</volume><issue>4</issue><artnum>34</artnum><issn>0008-0624</issn><eissn>1126-5434</eissn><abstract>Combining the quadratic equal-order stabilized method with the approach of local and parallel finite element computations and classical iterative methods for the discretization of the steady-state Navier–Stokes equations, three parallel iterative stabilized finite element methods based on fully overlapping domain decomposition are proposed and compared in this paper. In these methods, each processor independently computes an approximate solution in its own subdomain using a global composite mesh that is fine around its own subdomain and coarse elsewhere, making the methods be easy to implement based on existing codes and have low communication complexity. Under some (strong) uniqueness conditions, stability and convergence theory of the parallel iterative stabilized methods are derived. Numerical tests are also performed to demonstrate the stability, convergence orders and high efficiency of the proposed methods.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10092-020-00382-6</doi></addata></record>
fulltext fulltext
identifier ISSN: 0008-0624
ispartof Calcolo, 2020-12, Vol.57 (4), Article 34
issn 0008-0624
1126-5434
language eng
recordid cdi_proquest_journals_2450341754
source SpringerLink Journals
subjects Computational fluid dynamics
Convergence
Domain decomposition methods
Finite element method
Fluid flow
Incompressible flow
Iterative methods
Mathematics
Mathematics and Statistics
Microprocessors
Numerical Analysis
Numerical methods
Stability
Theory of Computation
title Parallel iterative stabilized finite element methods based on the quadratic equal-order elements for incompressible flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T08%3A49%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallel%20iterative%20stabilized%20finite%20element%20methods%20based%20on%20the%20quadratic%20equal-order%20elements%20for%20incompressible%20flows&rft.jtitle=Calcolo&rft.au=Zheng,%20Bo&rft.date=2020-12-01&rft.volume=57&rft.issue=4&rft.artnum=34&rft.issn=0008-0624&rft.eissn=1126-5434&rft_id=info:doi/10.1007/s10092-020-00382-6&rft_dat=%3Cproquest_cross%3E2450341754%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450341754&rft_id=info:pmid/&rfr_iscdi=true