Parallel iterative stabilized finite element methods based on the quadratic equal-order elements for incompressible flows
Combining the quadratic equal-order stabilized method with the approach of local and parallel finite element computations and classical iterative methods for the discretization of the steady-state Navier–Stokes equations, three parallel iterative stabilized finite element methods based on fully over...
Gespeichert in:
Veröffentlicht in: | Calcolo 2020-12, Vol.57 (4), Article 34 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Calcolo |
container_volume | 57 |
creator | Zheng, Bo Shang, Yueqiang |
description | Combining the quadratic equal-order stabilized method with the approach of local and parallel finite element computations and classical iterative methods for the discretization of the steady-state Navier–Stokes equations, three parallel iterative stabilized finite element methods based on fully overlapping domain decomposition are proposed and compared in this paper. In these methods, each processor independently computes an approximate solution in its own subdomain using a global composite mesh that is fine around its own subdomain and coarse elsewhere, making the methods be easy to implement based on existing codes and have low communication complexity. Under some (strong) uniqueness conditions, stability and convergence theory of the parallel iterative stabilized methods are derived. Numerical tests are also performed to demonstrate the stability, convergence orders and high efficiency of the proposed methods. |
doi_str_mv | 10.1007/s10092-020-00382-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450341754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450341754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-487371eaa8628b28f06e467e2c3f60446e940712d5137236c0432350a3187f653</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3TysdntUYpfUNCDnkN2d9amZDdtslX015taxZuXyUwyzxt4CDnncMkByquU60wwEMAAZCWYPiATzoVmhZLqkEwAoGKghTomJymt8lioSk3Ix5ON1nv01I0Y7ejekKbR1s67T2xp54Z8T9Fjj8NIexyXoU20tik_hoGOS6SbrW13ZEMxt56F2GL8RRLtQqRuaEK_jpiSqz3Szof3dEqOOusTnv2cU_Jye_M8v2eLx7uH-fWCNZLPRqaqUpYcra20qGpRdaBR6RJFIzsNSmmcKSi5aAsuSyF1A0oKWYCVvCo7XcgpudjnrmPYbDGNZhW2cchfGqEKkIqX2dGUiP1WE0NKETuzjq638cNwMDvFZq_YZMXmW7HRGZJ7KOXl4RXjX_Q_1BfFVn8r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450341754</pqid></control><display><type>article</type><title>Parallel iterative stabilized finite element methods based on the quadratic equal-order elements for incompressible flows</title><source>SpringerLink Journals</source><creator>Zheng, Bo ; Shang, Yueqiang</creator><creatorcontrib>Zheng, Bo ; Shang, Yueqiang</creatorcontrib><description>Combining the quadratic equal-order stabilized method with the approach of local and parallel finite element computations and classical iterative methods for the discretization of the steady-state Navier–Stokes equations, three parallel iterative stabilized finite element methods based on fully overlapping domain decomposition are proposed and compared in this paper. In these methods, each processor independently computes an approximate solution in its own subdomain using a global composite mesh that is fine around its own subdomain and coarse elsewhere, making the methods be easy to implement based on existing codes and have low communication complexity. Under some (strong) uniqueness conditions, stability and convergence theory of the parallel iterative stabilized methods are derived. Numerical tests are also performed to demonstrate the stability, convergence orders and high efficiency of the proposed methods.</description><identifier>ISSN: 0008-0624</identifier><identifier>EISSN: 1126-5434</identifier><identifier>DOI: 10.1007/s10092-020-00382-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Computational fluid dynamics ; Convergence ; Domain decomposition methods ; Finite element method ; Fluid flow ; Incompressible flow ; Iterative methods ; Mathematics ; Mathematics and Statistics ; Microprocessors ; Numerical Analysis ; Numerical methods ; Stability ; Theory of Computation</subject><ispartof>Calcolo, 2020-12, Vol.57 (4), Article 34</ispartof><rights>Istituto di Informatica e Telematica (IIT) 2020</rights><rights>Istituto di Informatica e Telematica (IIT) 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-487371eaa8628b28f06e467e2c3f60446e940712d5137236c0432350a3187f653</citedby><cites>FETCH-LOGICAL-c319t-487371eaa8628b28f06e467e2c3f60446e940712d5137236c0432350a3187f653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10092-020-00382-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10092-020-00382-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zheng, Bo</creatorcontrib><creatorcontrib>Shang, Yueqiang</creatorcontrib><title>Parallel iterative stabilized finite element methods based on the quadratic equal-order elements for incompressible flows</title><title>Calcolo</title><addtitle>Calcolo</addtitle><description>Combining the quadratic equal-order stabilized method with the approach of local and parallel finite element computations and classical iterative methods for the discretization of the steady-state Navier–Stokes equations, three parallel iterative stabilized finite element methods based on fully overlapping domain decomposition are proposed and compared in this paper. In these methods, each processor independently computes an approximate solution in its own subdomain using a global composite mesh that is fine around its own subdomain and coarse elsewhere, making the methods be easy to implement based on existing codes and have low communication complexity. Under some (strong) uniqueness conditions, stability and convergence theory of the parallel iterative stabilized methods are derived. Numerical tests are also performed to demonstrate the stability, convergence orders and high efficiency of the proposed methods.</description><subject>Computational fluid dynamics</subject><subject>Convergence</subject><subject>Domain decomposition methods</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Incompressible flow</subject><subject>Iterative methods</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Microprocessors</subject><subject>Numerical Analysis</subject><subject>Numerical methods</subject><subject>Stability</subject><subject>Theory of Computation</subject><issn>0008-0624</issn><issn>1126-5434</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3TysdntUYpfUNCDnkN2d9amZDdtslX015taxZuXyUwyzxt4CDnncMkByquU60wwEMAAZCWYPiATzoVmhZLqkEwAoGKghTomJymt8lioSk3Ix5ON1nv01I0Y7ejekKbR1s67T2xp54Z8T9Fjj8NIexyXoU20tik_hoGOS6SbrW13ZEMxt56F2GL8RRLtQqRuaEK_jpiSqz3Szof3dEqOOusTnv2cU_Jye_M8v2eLx7uH-fWCNZLPRqaqUpYcra20qGpRdaBR6RJFIzsNSmmcKSi5aAsuSyF1A0oKWYCVvCo7XcgpudjnrmPYbDGNZhW2cchfGqEKkIqX2dGUiP1WE0NKETuzjq638cNwMDvFZq_YZMXmW7HRGZJ7KOXl4RXjX_Q_1BfFVn8r</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Zheng, Bo</creator><creator>Shang, Yueqiang</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20201201</creationdate><title>Parallel iterative stabilized finite element methods based on the quadratic equal-order elements for incompressible flows</title><author>Zheng, Bo ; Shang, Yueqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-487371eaa8628b28f06e467e2c3f60446e940712d5137236c0432350a3187f653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational fluid dynamics</topic><topic>Convergence</topic><topic>Domain decomposition methods</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Incompressible flow</topic><topic>Iterative methods</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Microprocessors</topic><topic>Numerical Analysis</topic><topic>Numerical methods</topic><topic>Stability</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Bo</creatorcontrib><creatorcontrib>Shang, Yueqiang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Calcolo</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Bo</au><au>Shang, Yueqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallel iterative stabilized finite element methods based on the quadratic equal-order elements for incompressible flows</atitle><jtitle>Calcolo</jtitle><stitle>Calcolo</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>57</volume><issue>4</issue><artnum>34</artnum><issn>0008-0624</issn><eissn>1126-5434</eissn><abstract>Combining the quadratic equal-order stabilized method with the approach of local and parallel finite element computations and classical iterative methods for the discretization of the steady-state Navier–Stokes equations, three parallel iterative stabilized finite element methods based on fully overlapping domain decomposition are proposed and compared in this paper. In these methods, each processor independently computes an approximate solution in its own subdomain using a global composite mesh that is fine around its own subdomain and coarse elsewhere, making the methods be easy to implement based on existing codes and have low communication complexity. Under some (strong) uniqueness conditions, stability and convergence theory of the parallel iterative stabilized methods are derived. Numerical tests are also performed to demonstrate the stability, convergence orders and high efficiency of the proposed methods.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10092-020-00382-6</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-0624 |
ispartof | Calcolo, 2020-12, Vol.57 (4), Article 34 |
issn | 0008-0624 1126-5434 |
language | eng |
recordid | cdi_proquest_journals_2450341754 |
source | SpringerLink Journals |
subjects | Computational fluid dynamics Convergence Domain decomposition methods Finite element method Fluid flow Incompressible flow Iterative methods Mathematics Mathematics and Statistics Microprocessors Numerical Analysis Numerical methods Stability Theory of Computation |
title | Parallel iterative stabilized finite element methods based on the quadratic equal-order elements for incompressible flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T08%3A49%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallel%20iterative%20stabilized%20finite%20element%20methods%20based%20on%20the%20quadratic%20equal-order%20elements%20for%20incompressible%20flows&rft.jtitle=Calcolo&rft.au=Zheng,%20Bo&rft.date=2020-12-01&rft.volume=57&rft.issue=4&rft.artnum=34&rft.issn=0008-0624&rft.eissn=1126-5434&rft_id=info:doi/10.1007/s10092-020-00382-6&rft_dat=%3Cproquest_cross%3E2450341754%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450341754&rft_id=info:pmid/&rfr_iscdi=true |