The method of single expression (MSE) as a prospective modeling tool for boundary value problems: an extension from nano-optics to quantum mechanics

Mathematical description of the wave phenomena in nano-optics and quantum mechanics is similar and requires wavelength-scale analysis of wave interaction with nano-layers in optics and micro-particle interaction with potential barriers or wells in quantum mechanics. Traditionally, when dealing with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optical and quantum electronics 2020-10, Vol.52 (10), Article 454
Hauptverfasser: Baghdasaryan, H. V., Knyazyan, T. M., Baghdasaryan, T., Hovhannisyan, T. T., Marciniak, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Optical and quantum electronics
container_volume 52
creator Baghdasaryan, H. V.
Knyazyan, T. M.
Baghdasaryan, T.
Hovhannisyan, T. T.
Marciniak, M.
description Mathematical description of the wave phenomena in nano-optics and quantum mechanics is similar and requires wavelength-scale analysis of wave interaction with nano-layers in optics and micro-particle interaction with potential barriers or wells in quantum mechanics. Traditionally, when dealing with boundary problems in nano-optics and quantum mechanics, the same fundamental approach of counter-propagating waves is often being used, when general solutions of the wave equations are presented as a sum of counter-propagating waves. This type of solution presentation relies on the superposition principle restricting correct description of strong intensity-dependent nonlinear wave-matter interaction. The non-traditional method of single expression (MSE) does not exploit the superposition principle, but rather uses resulting field representation and backward-propagation algorithm allowing to obtain correct steady-state solutions of boundary value problems without approximations and at any value of wave intensity by taking into account correctly intensity-dependent nonlinearity, loss or gain in a medium. In the present work a detailed description of the MSE approach extended for one dimensional quantum mechanical boundary value problems is presented. Results of numerical simulations by the MSE of electron tunneling through rectangular single and double potential barriers are presented and discussed.
doi_str_mv 10.1007/s11082-020-02572-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450337335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450337335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9d790cfae9ee9fef68852d227401c483a5ff6036c79ad65bac5ec155d95932313</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOF5ewFXAjS6quUzaxp3IeIERF47gLmTSE6fSJp2kFX0PH9jMVHDn4pBD-P7_nPMjdELJBSWkuIyUkpJlhJFUomBZvoMmdNOUtHjdRRPCSZ6Vksp9dBDjOyEknwoyQd-LFeAW-pWvsLc41u6tAQyfXYAYa-_w2ePz7BzriDXugo8dmL7-SBJfQZNg3HvfYOsDXvrBVTp84Q_dDLCBlw208Qprl_x6cFs7G3yLnXY-811fm5j0eD1o1w9tWsOstEufR2jP6ibC8e97iF5uZ4ub-2z-dPdwcz3PDKeyz2RVSGKsBgkgLdi8LAWrGCumhJppybWwNic8N4XUVS6W2ggwVIhKCskZp_wQnY6-adn1ALFX734ILo1ULKXDecG5SBQbKZPujwGs6kLdpksVJWqTvhrTVyl9tU1f5UnER1FMsHuD8Gf9j-oHPguKNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450337335</pqid></control><display><type>article</type><title>The method of single expression (MSE) as a prospective modeling tool for boundary value problems: an extension from nano-optics to quantum mechanics</title><source>SpringerLink Journals - AutoHoldings</source><creator>Baghdasaryan, H. V. ; Knyazyan, T. M. ; Baghdasaryan, T. ; Hovhannisyan, T. T. ; Marciniak, M.</creator><creatorcontrib>Baghdasaryan, H. V. ; Knyazyan, T. M. ; Baghdasaryan, T. ; Hovhannisyan, T. T. ; Marciniak, M.</creatorcontrib><description>Mathematical description of the wave phenomena in nano-optics and quantum mechanics is similar and requires wavelength-scale analysis of wave interaction with nano-layers in optics and micro-particle interaction with potential barriers or wells in quantum mechanics. Traditionally, when dealing with boundary problems in nano-optics and quantum mechanics, the same fundamental approach of counter-propagating waves is often being used, when general solutions of the wave equations are presented as a sum of counter-propagating waves. This type of solution presentation relies on the superposition principle restricting correct description of strong intensity-dependent nonlinear wave-matter interaction. The non-traditional method of single expression (MSE) does not exploit the superposition principle, but rather uses resulting field representation and backward-propagation algorithm allowing to obtain correct steady-state solutions of boundary value problems without approximations and at any value of wave intensity by taking into account correctly intensity-dependent nonlinearity, loss or gain in a medium. In the present work a detailed description of the MSE approach extended for one dimensional quantum mechanical boundary value problems is presented. Results of numerical simulations by the MSE of electron tunneling through rectangular single and double potential barriers are presented and discussed.</description><identifier>ISSN: 0306-8919</identifier><identifier>EISSN: 1572-817X</identifier><identifier>DOI: 10.1007/s11082-020-02572-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Boundary value problems ; Characterization and Evaluation of Materials ; Computer Communication Networks ; Electrical Engineering ; Electron tunneling ; Lasers ; Mathematical models ; Nano-optics ; Nonlinearity ; Optical Devices ; Optics ; Particle interactions ; Photonics ; Physics ; Physics and Astronomy ; Potential barriers ; Quantum mechanics ; Quantum physics ; Superposition (mathematics) ; Wave equations ; Wave interaction ; Wave propagation</subject><ispartof>Optical and quantum electronics, 2020-10, Vol.52 (10), Article 454</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9d790cfae9ee9fef68852d227401c483a5ff6036c79ad65bac5ec155d95932313</citedby><cites>FETCH-LOGICAL-c319t-9d790cfae9ee9fef68852d227401c483a5ff6036c79ad65bac5ec155d95932313</cites><orcidid>0000-0001-5451-1402</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11082-020-02572-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11082-020-02572-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Baghdasaryan, H. V.</creatorcontrib><creatorcontrib>Knyazyan, T. M.</creatorcontrib><creatorcontrib>Baghdasaryan, T.</creatorcontrib><creatorcontrib>Hovhannisyan, T. T.</creatorcontrib><creatorcontrib>Marciniak, M.</creatorcontrib><title>The method of single expression (MSE) as a prospective modeling tool for boundary value problems: an extension from nano-optics to quantum mechanics</title><title>Optical and quantum electronics</title><addtitle>Opt Quant Electron</addtitle><description>Mathematical description of the wave phenomena in nano-optics and quantum mechanics is similar and requires wavelength-scale analysis of wave interaction with nano-layers in optics and micro-particle interaction with potential barriers or wells in quantum mechanics. Traditionally, when dealing with boundary problems in nano-optics and quantum mechanics, the same fundamental approach of counter-propagating waves is often being used, when general solutions of the wave equations are presented as a sum of counter-propagating waves. This type of solution presentation relies on the superposition principle restricting correct description of strong intensity-dependent nonlinear wave-matter interaction. The non-traditional method of single expression (MSE) does not exploit the superposition principle, but rather uses resulting field representation and backward-propagation algorithm allowing to obtain correct steady-state solutions of boundary value problems without approximations and at any value of wave intensity by taking into account correctly intensity-dependent nonlinearity, loss or gain in a medium. In the present work a detailed description of the MSE approach extended for one dimensional quantum mechanical boundary value problems is presented. Results of numerical simulations by the MSE of electron tunneling through rectangular single and double potential barriers are presented and discussed.</description><subject>Algorithms</subject><subject>Boundary value problems</subject><subject>Characterization and Evaluation of Materials</subject><subject>Computer Communication Networks</subject><subject>Electrical Engineering</subject><subject>Electron tunneling</subject><subject>Lasers</subject><subject>Mathematical models</subject><subject>Nano-optics</subject><subject>Nonlinearity</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Particle interactions</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Potential barriers</subject><subject>Quantum mechanics</subject><subject>Quantum physics</subject><subject>Superposition (mathematics)</subject><subject>Wave equations</subject><subject>Wave interaction</subject><subject>Wave propagation</subject><issn>0306-8919</issn><issn>1572-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOF5ewFXAjS6quUzaxp3IeIERF47gLmTSE6fSJp2kFX0PH9jMVHDn4pBD-P7_nPMjdELJBSWkuIyUkpJlhJFUomBZvoMmdNOUtHjdRRPCSZ6Vksp9dBDjOyEknwoyQd-LFeAW-pWvsLc41u6tAQyfXYAYa-_w2ePz7BzriDXugo8dmL7-SBJfQZNg3HvfYOsDXvrBVTp84Q_dDLCBlw208Qprl_x6cFs7G3yLnXY-811fm5j0eD1o1w9tWsOstEufR2jP6ibC8e97iF5uZ4ub-2z-dPdwcz3PDKeyz2RVSGKsBgkgLdi8LAWrGCumhJppybWwNic8N4XUVS6W2ggwVIhKCskZp_wQnY6-adn1ALFX734ILo1ULKXDecG5SBQbKZPujwGs6kLdpksVJWqTvhrTVyl9tU1f5UnER1FMsHuD8Gf9j-oHPguKNQ</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Baghdasaryan, H. V.</creator><creator>Knyazyan, T. M.</creator><creator>Baghdasaryan, T.</creator><creator>Hovhannisyan, T. T.</creator><creator>Marciniak, M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5451-1402</orcidid></search><sort><creationdate>20201001</creationdate><title>The method of single expression (MSE) as a prospective modeling tool for boundary value problems: an extension from nano-optics to quantum mechanics</title><author>Baghdasaryan, H. V. ; Knyazyan, T. M. ; Baghdasaryan, T. ; Hovhannisyan, T. T. ; Marciniak, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9d790cfae9ee9fef68852d227401c483a5ff6036c79ad65bac5ec155d95932313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Boundary value problems</topic><topic>Characterization and Evaluation of Materials</topic><topic>Computer Communication Networks</topic><topic>Electrical Engineering</topic><topic>Electron tunneling</topic><topic>Lasers</topic><topic>Mathematical models</topic><topic>Nano-optics</topic><topic>Nonlinearity</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Particle interactions</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Potential barriers</topic><topic>Quantum mechanics</topic><topic>Quantum physics</topic><topic>Superposition (mathematics)</topic><topic>Wave equations</topic><topic>Wave interaction</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baghdasaryan, H. V.</creatorcontrib><creatorcontrib>Knyazyan, T. M.</creatorcontrib><creatorcontrib>Baghdasaryan, T.</creatorcontrib><creatorcontrib>Hovhannisyan, T. T.</creatorcontrib><creatorcontrib>Marciniak, M.</creatorcontrib><collection>CrossRef</collection><jtitle>Optical and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baghdasaryan, H. V.</au><au>Knyazyan, T. M.</au><au>Baghdasaryan, T.</au><au>Hovhannisyan, T. T.</au><au>Marciniak, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The method of single expression (MSE) as a prospective modeling tool for boundary value problems: an extension from nano-optics to quantum mechanics</atitle><jtitle>Optical and quantum electronics</jtitle><stitle>Opt Quant Electron</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>52</volume><issue>10</issue><artnum>454</artnum><issn>0306-8919</issn><eissn>1572-817X</eissn><abstract>Mathematical description of the wave phenomena in nano-optics and quantum mechanics is similar and requires wavelength-scale analysis of wave interaction with nano-layers in optics and micro-particle interaction with potential barriers or wells in quantum mechanics. Traditionally, when dealing with boundary problems in nano-optics and quantum mechanics, the same fundamental approach of counter-propagating waves is often being used, when general solutions of the wave equations are presented as a sum of counter-propagating waves. This type of solution presentation relies on the superposition principle restricting correct description of strong intensity-dependent nonlinear wave-matter interaction. The non-traditional method of single expression (MSE) does not exploit the superposition principle, but rather uses resulting field representation and backward-propagation algorithm allowing to obtain correct steady-state solutions of boundary value problems without approximations and at any value of wave intensity by taking into account correctly intensity-dependent nonlinearity, loss or gain in a medium. In the present work a detailed description of the MSE approach extended for one dimensional quantum mechanical boundary value problems is presented. Results of numerical simulations by the MSE of electron tunneling through rectangular single and double potential barriers are presented and discussed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11082-020-02572-6</doi><orcidid>https://orcid.org/0000-0001-5451-1402</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0306-8919
ispartof Optical and quantum electronics, 2020-10, Vol.52 (10), Article 454
issn 0306-8919
1572-817X
language eng
recordid cdi_proquest_journals_2450337335
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Boundary value problems
Characterization and Evaluation of Materials
Computer Communication Networks
Electrical Engineering
Electron tunneling
Lasers
Mathematical models
Nano-optics
Nonlinearity
Optical Devices
Optics
Particle interactions
Photonics
Physics
Physics and Astronomy
Potential barriers
Quantum mechanics
Quantum physics
Superposition (mathematics)
Wave equations
Wave interaction
Wave propagation
title The method of single expression (MSE) as a prospective modeling tool for boundary value problems: an extension from nano-optics to quantum mechanics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A05%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20method%20of%20single%20expression%20(MSE)%20as%20a%20prospective%20modeling%20tool%20for%20boundary%20value%20problems:%20an%20extension%20from%20nano-optics%20to%20quantum%20mechanics&rft.jtitle=Optical%20and%20quantum%20electronics&rft.au=Baghdasaryan,%20H.%20V.&rft.date=2020-10-01&rft.volume=52&rft.issue=10&rft.artnum=454&rft.issn=0306-8919&rft.eissn=1572-817X&rft_id=info:doi/10.1007/s11082-020-02572-6&rft_dat=%3Cproquest_cross%3E2450337335%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450337335&rft_id=info:pmid/&rfr_iscdi=true