Influence of Hydrogen Pre-treatment at Different Temperatures on Copper Oxide Supported on Carbonised Oil Palm Empty Fruit Bunch (CuO/EFBC) for Low-Temperature Nitric Oxide Removal
Low-temperature nitric oxide (NO) removal by oil palm empty fruit bunch (EFBC) modified with phosphoric acid dehydration, followed by copper oxide (CuO) impregnation is a function of both surface chemical and physical properties of CuO/EFBC resulting from hydrogen (H 2 ) pre-treatment at different t...
Gespeichert in:
Veröffentlicht in: | Waste and biomass valorization 2020-10, Vol.11 (10), p.5561-5574 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5574 |
---|---|
container_issue | 10 |
container_start_page | 5561 |
container_title | Waste and biomass valorization |
container_volume | 11 |
creator | Ahmad, N. Zahari, F. M. Ibrahim, N. |
description | Low-temperature nitric oxide (NO) removal by oil palm empty fruit bunch (EFBC) modified with phosphoric acid dehydration, followed by copper oxide (CuO) impregnation is a function of both surface chemical and physical properties of CuO/EFBC resulting from hydrogen (H
2
) pre-treatment at different temperatures. Subjecting CuO/EFBC sample to H
2
pre-treatment at 400 °C initially reduces the NO adsorption capacity (
q
) (at C/C
o
= 0.95) from 1.65 to 1.57 mg/g although the BET specific surface area (S
BET
) increases from 4.81 to 160 m
2
/g, due to surface predomination by acidic oxygenated groups (e.g. carboxyl, lactone and phenolic groups). At 500 °C,
q
increases to 5.67 mg/g as some of the acidic surface groups are decomposed and the S
BET
improves to 466 m
2
/g. Further increase in the temperature to 600 and 700 °C respectively enhances the S
BET
to 448 and 516 m
2
/g, and decomposes most of the acidic groups, leaving unsaturated C to react with H and form stable basic sites e.g. aldehyde, alkane, alkyl and aromatic groups more favourable for NO adsorption, thus giving rise to
q
(at C/C
o
= 0.5) to 41.01 and 62.74 mg/g, with stable performance for more than 2 h of experiment. In addition, higher pore volume, smaller pore size and smaller crystallite size of CuO, Cu
2
O and Cu
3
P sites are observed in samples pre-treated at high temperatures (600 and 700 °C), leading to a condition more auspicious for dissociative NO adsorption.
Graphic Abstract |
doi_str_mv | 10.1007/s12649-020-01064-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450337285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450337285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-fa67c2d2065593013183a4cfd803a340ed0814ed25c407369e32e6f86a5961363</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhSMEElXpH-BkiQscTMd24niPNOy2lVZsBUXiZplkXFIldhg7wP6v_kDSbgWcOM08zXtvDl9RvBTwVgDUp0lIXa44SOAgQJfcPCmOhKlrLnX15emfvRTPi5OUbgFACmGkqo-Ku8vghxlDiyx6drHvKN5gYFeEPBO6PGLIzGX2vvce6V5c4zghuTwTJhYDa-K0aLb71XfIPs3TFClj93Bx9DWGPi1q1w_syg0jW49T3rMNzX1mZ3Nov7HXzbw7XW_OmjfMR2Lb-JP_84J96DP17WP9RxzjDze8KJ55NyQ8eZzHxefN-rq54Nvd-WXzbstbVenMvdN1KzsJuqpWCoQSRrmy9Z0B5VQJ2IERJXayakuolV6hkqi90a5aaaG0Oi5eHXonit9nTNnexpnC8tLKsgKlammqxSUPrpZiSoTeTtSPjvZWgL0HZA-A7ALIPgCyZgmpQygt5nCD9Lf6P6nfaMSTpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450337285</pqid></control><display><type>article</type><title>Influence of Hydrogen Pre-treatment at Different Temperatures on Copper Oxide Supported on Carbonised Oil Palm Empty Fruit Bunch (CuO/EFBC) for Low-Temperature Nitric Oxide Removal</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ahmad, N. ; Zahari, F. M. ; Ibrahim, N.</creator><creatorcontrib>Ahmad, N. ; Zahari, F. M. ; Ibrahim, N.</creatorcontrib><description>Low-temperature nitric oxide (NO) removal by oil palm empty fruit bunch (EFBC) modified with phosphoric acid dehydration, followed by copper oxide (CuO) impregnation is a function of both surface chemical and physical properties of CuO/EFBC resulting from hydrogen (H
2
) pre-treatment at different temperatures. Subjecting CuO/EFBC sample to H
2
pre-treatment at 400 °C initially reduces the NO adsorption capacity (
q
) (at C/C
o
= 0.95) from 1.65 to 1.57 mg/g although the BET specific surface area (S
BET
) increases from 4.81 to 160 m
2
/g, due to surface predomination by acidic oxygenated groups (e.g. carboxyl, lactone and phenolic groups). At 500 °C,
q
increases to 5.67 mg/g as some of the acidic surface groups are decomposed and the S
BET
improves to 466 m
2
/g. Further increase in the temperature to 600 and 700 °C respectively enhances the S
BET
to 448 and 516 m
2
/g, and decomposes most of the acidic groups, leaving unsaturated C to react with H and form stable basic sites e.g. aldehyde, alkane, alkyl and aromatic groups more favourable for NO adsorption, thus giving rise to
q
(at C/C
o
= 0.5) to 41.01 and 62.74 mg/g, with stable performance for more than 2 h of experiment. In addition, higher pore volume, smaller pore size and smaller crystallite size of CuO, Cu
2
O and Cu
3
P sites are observed in samples pre-treated at high temperatures (600 and 700 °C), leading to a condition more auspicious for dissociative NO adsorption.
Graphic Abstract</description><identifier>ISSN: 1877-2641</identifier><identifier>EISSN: 1877-265X</identifier><identifier>DOI: 10.1007/s12649-020-01064-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adsorption ; Aldehydes ; Alkanes ; Copper ; Copper oxides ; Crystallites ; Crystals ; Decomposition reactions ; Dehydration ; Engineering ; Environment ; Environmental Engineering/Biotechnology ; Fruits ; High temperature ; Industrial Pollution Prevention ; Low temperature ; Nitric oxide ; Original Paper ; Phenolic compounds ; Phenols ; Phosphoric acid ; Physical properties ; Pore size ; Porosity ; Pretreatment ; Renewable and Green Energy ; Surface chemistry ; Temperature ; Waste Management/Waste Technology</subject><ispartof>Waste and biomass valorization, 2020-10, Vol.11 (10), p.5561-5574</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-fa67c2d2065593013183a4cfd803a340ed0814ed25c407369e32e6f86a5961363</citedby><cites>FETCH-LOGICAL-c356t-fa67c2d2065593013183a4cfd803a340ed0814ed25c407369e32e6f86a5961363</cites><orcidid>0000-0002-3515-7812</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12649-020-01064-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12649-020-01064-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ahmad, N.</creatorcontrib><creatorcontrib>Zahari, F. M.</creatorcontrib><creatorcontrib>Ibrahim, N.</creatorcontrib><title>Influence of Hydrogen Pre-treatment at Different Temperatures on Copper Oxide Supported on Carbonised Oil Palm Empty Fruit Bunch (CuO/EFBC) for Low-Temperature Nitric Oxide Removal</title><title>Waste and biomass valorization</title><addtitle>Waste Biomass Valor</addtitle><description>Low-temperature nitric oxide (NO) removal by oil palm empty fruit bunch (EFBC) modified with phosphoric acid dehydration, followed by copper oxide (CuO) impregnation is a function of both surface chemical and physical properties of CuO/EFBC resulting from hydrogen (H
2
) pre-treatment at different temperatures. Subjecting CuO/EFBC sample to H
2
pre-treatment at 400 °C initially reduces the NO adsorption capacity (
q
) (at C/C
o
= 0.95) from 1.65 to 1.57 mg/g although the BET specific surface area (S
BET
) increases from 4.81 to 160 m
2
/g, due to surface predomination by acidic oxygenated groups (e.g. carboxyl, lactone and phenolic groups). At 500 °C,
q
increases to 5.67 mg/g as some of the acidic surface groups are decomposed and the S
BET
improves to 466 m
2
/g. Further increase in the temperature to 600 and 700 °C respectively enhances the S
BET
to 448 and 516 m
2
/g, and decomposes most of the acidic groups, leaving unsaturated C to react with H and form stable basic sites e.g. aldehyde, alkane, alkyl and aromatic groups more favourable for NO adsorption, thus giving rise to
q
(at C/C
o
= 0.5) to 41.01 and 62.74 mg/g, with stable performance for more than 2 h of experiment. In addition, higher pore volume, smaller pore size and smaller crystallite size of CuO, Cu
2
O and Cu
3
P sites are observed in samples pre-treated at high temperatures (600 and 700 °C), leading to a condition more auspicious for dissociative NO adsorption.
Graphic Abstract</description><subject>Adsorption</subject><subject>Aldehydes</subject><subject>Alkanes</subject><subject>Copper</subject><subject>Copper oxides</subject><subject>Crystallites</subject><subject>Crystals</subject><subject>Decomposition reactions</subject><subject>Dehydration</subject><subject>Engineering</subject><subject>Environment</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Fruits</subject><subject>High temperature</subject><subject>Industrial Pollution Prevention</subject><subject>Low temperature</subject><subject>Nitric oxide</subject><subject>Original Paper</subject><subject>Phenolic compounds</subject><subject>Phenols</subject><subject>Phosphoric acid</subject><subject>Physical properties</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Pretreatment</subject><subject>Renewable and Green Energy</subject><subject>Surface chemistry</subject><subject>Temperature</subject><subject>Waste Management/Waste Technology</subject><issn>1877-2641</issn><issn>1877-265X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kUFv1DAQhSMEElXpH-BkiQscTMd24niPNOy2lVZsBUXiZplkXFIldhg7wP6v_kDSbgWcOM08zXtvDl9RvBTwVgDUp0lIXa44SOAgQJfcPCmOhKlrLnX15emfvRTPi5OUbgFACmGkqo-Ku8vghxlDiyx6drHvKN5gYFeEPBO6PGLIzGX2vvce6V5c4zghuTwTJhYDa-K0aLb71XfIPs3TFClj93Bx9DWGPi1q1w_syg0jW49T3rMNzX1mZ3Nov7HXzbw7XW_OmjfMR2Lb-JP_84J96DP17WP9RxzjDze8KJ55NyQ8eZzHxefN-rq54Nvd-WXzbstbVenMvdN1KzsJuqpWCoQSRrmy9Z0B5VQJ2IERJXayakuolV6hkqi90a5aaaG0Oi5eHXonit9nTNnexpnC8tLKsgKlammqxSUPrpZiSoTeTtSPjvZWgL0HZA-A7ALIPgCyZgmpQygt5nCD9Lf6P6nfaMSTpg</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Ahmad, N.</creator><creator>Zahari, F. M.</creator><creator>Ibrahim, N.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3515-7812</orcidid></search><sort><creationdate>20201001</creationdate><title>Influence of Hydrogen Pre-treatment at Different Temperatures on Copper Oxide Supported on Carbonised Oil Palm Empty Fruit Bunch (CuO/EFBC) for Low-Temperature Nitric Oxide Removal</title><author>Ahmad, N. ; Zahari, F. M. ; Ibrahim, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-fa67c2d2065593013183a4cfd803a340ed0814ed25c407369e32e6f86a5961363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorption</topic><topic>Aldehydes</topic><topic>Alkanes</topic><topic>Copper</topic><topic>Copper oxides</topic><topic>Crystallites</topic><topic>Crystals</topic><topic>Decomposition reactions</topic><topic>Dehydration</topic><topic>Engineering</topic><topic>Environment</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Fruits</topic><topic>High temperature</topic><topic>Industrial Pollution Prevention</topic><topic>Low temperature</topic><topic>Nitric oxide</topic><topic>Original Paper</topic><topic>Phenolic compounds</topic><topic>Phenols</topic><topic>Phosphoric acid</topic><topic>Physical properties</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Pretreatment</topic><topic>Renewable and Green Energy</topic><topic>Surface chemistry</topic><topic>Temperature</topic><topic>Waste Management/Waste Technology</topic><toplevel>online_resources</toplevel><creatorcontrib>Ahmad, N.</creatorcontrib><creatorcontrib>Zahari, F. M.</creatorcontrib><creatorcontrib>Ibrahim, N.</creatorcontrib><collection>CrossRef</collection><jtitle>Waste and biomass valorization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmad, N.</au><au>Zahari, F. M.</au><au>Ibrahim, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Hydrogen Pre-treatment at Different Temperatures on Copper Oxide Supported on Carbonised Oil Palm Empty Fruit Bunch (CuO/EFBC) for Low-Temperature Nitric Oxide Removal</atitle><jtitle>Waste and biomass valorization</jtitle><stitle>Waste Biomass Valor</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>11</volume><issue>10</issue><spage>5561</spage><epage>5574</epage><pages>5561-5574</pages><issn>1877-2641</issn><eissn>1877-265X</eissn><abstract>Low-temperature nitric oxide (NO) removal by oil palm empty fruit bunch (EFBC) modified with phosphoric acid dehydration, followed by copper oxide (CuO) impregnation is a function of both surface chemical and physical properties of CuO/EFBC resulting from hydrogen (H
2
) pre-treatment at different temperatures. Subjecting CuO/EFBC sample to H
2
pre-treatment at 400 °C initially reduces the NO adsorption capacity (
q
) (at C/C
o
= 0.95) from 1.65 to 1.57 mg/g although the BET specific surface area (S
BET
) increases from 4.81 to 160 m
2
/g, due to surface predomination by acidic oxygenated groups (e.g. carboxyl, lactone and phenolic groups). At 500 °C,
q
increases to 5.67 mg/g as some of the acidic surface groups are decomposed and the S
BET
improves to 466 m
2
/g. Further increase in the temperature to 600 and 700 °C respectively enhances the S
BET
to 448 and 516 m
2
/g, and decomposes most of the acidic groups, leaving unsaturated C to react with H and form stable basic sites e.g. aldehyde, alkane, alkyl and aromatic groups more favourable for NO adsorption, thus giving rise to
q
(at C/C
o
= 0.5) to 41.01 and 62.74 mg/g, with stable performance for more than 2 h of experiment. In addition, higher pore volume, smaller pore size and smaller crystallite size of CuO, Cu
2
O and Cu
3
P sites are observed in samples pre-treated at high temperatures (600 and 700 °C), leading to a condition more auspicious for dissociative NO adsorption.
Graphic Abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s12649-020-01064-8</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3515-7812</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1877-2641 |
ispartof | Waste and biomass valorization, 2020-10, Vol.11 (10), p.5561-5574 |
issn | 1877-2641 1877-265X |
language | eng |
recordid | cdi_proquest_journals_2450337285 |
source | SpringerLink Journals - AutoHoldings |
subjects | Adsorption Aldehydes Alkanes Copper Copper oxides Crystallites Crystals Decomposition reactions Dehydration Engineering Environment Environmental Engineering/Biotechnology Fruits High temperature Industrial Pollution Prevention Low temperature Nitric oxide Original Paper Phenolic compounds Phenols Phosphoric acid Physical properties Pore size Porosity Pretreatment Renewable and Green Energy Surface chemistry Temperature Waste Management/Waste Technology |
title | Influence of Hydrogen Pre-treatment at Different Temperatures on Copper Oxide Supported on Carbonised Oil Palm Empty Fruit Bunch (CuO/EFBC) for Low-Temperature Nitric Oxide Removal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A03%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Hydrogen%20Pre-treatment%20at%20Different%20Temperatures%20on%20Copper%20Oxide%20Supported%20on%20Carbonised%20Oil%20Palm%20Empty%20Fruit%20Bunch%20(CuO/EFBC)%20for%20Low-Temperature%20Nitric%20Oxide%20Removal&rft.jtitle=Waste%20and%20biomass%20valorization&rft.au=Ahmad,%20N.&rft.date=2020-10-01&rft.volume=11&rft.issue=10&rft.spage=5561&rft.epage=5574&rft.pages=5561-5574&rft.issn=1877-2641&rft.eissn=1877-265X&rft_id=info:doi/10.1007/s12649-020-01064-8&rft_dat=%3Cproquest_cross%3E2450337285%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450337285&rft_id=info:pmid/&rfr_iscdi=true |