Influence of Hydrogen Pre-treatment at Different Temperatures on Copper Oxide Supported on Carbonised Oil Palm Empty Fruit Bunch (CuO/EFBC) for Low-Temperature Nitric Oxide Removal

Low-temperature nitric oxide (NO) removal by oil palm empty fruit bunch (EFBC) modified with phosphoric acid dehydration, followed by copper oxide (CuO) impregnation is a function of both surface chemical and physical properties of CuO/EFBC resulting from hydrogen (H 2 ) pre-treatment at different t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Waste and biomass valorization 2020-10, Vol.11 (10), p.5561-5574
Hauptverfasser: Ahmad, N., Zahari, F. M., Ibrahim, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5574
container_issue 10
container_start_page 5561
container_title Waste and biomass valorization
container_volume 11
creator Ahmad, N.
Zahari, F. M.
Ibrahim, N.
description Low-temperature nitric oxide (NO) removal by oil palm empty fruit bunch (EFBC) modified with phosphoric acid dehydration, followed by copper oxide (CuO) impregnation is a function of both surface chemical and physical properties of CuO/EFBC resulting from hydrogen (H 2 ) pre-treatment at different temperatures. Subjecting CuO/EFBC sample to H 2 pre-treatment at 400 °C initially reduces the NO adsorption capacity ( q ) (at C/C o = 0.95) from 1.65 to 1.57 mg/g although the BET specific surface area (S BET ) increases from 4.81 to 160 m 2 /g, due to surface predomination by acidic oxygenated groups (e.g. carboxyl, lactone and phenolic groups). At 500 °C, q increases to 5.67 mg/g as some of the acidic surface groups are decomposed and the S BET improves to 466 m 2 /g. Further increase in the temperature to 600 and 700 °C respectively enhances the S BET to 448 and 516 m 2 /g, and decomposes most of the acidic groups, leaving unsaturated C to react with H and form stable basic sites e.g. aldehyde, alkane, alkyl and aromatic groups more favourable for NO adsorption, thus giving rise to q (at C/C o = 0.5) to 41.01 and 62.74 mg/g, with stable performance for more than 2 h of experiment. In addition, higher pore volume, smaller pore size and smaller crystallite size of CuO, Cu 2 O and Cu 3 P sites are observed in samples pre-treated at high temperatures (600 and 700 °C), leading to a condition more auspicious for dissociative NO adsorption. Graphic Abstract
doi_str_mv 10.1007/s12649-020-01064-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450337285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450337285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-fa67c2d2065593013183a4cfd803a340ed0814ed25c407369e32e6f86a5961363</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhSMEElXpH-BkiQscTMd24niPNOy2lVZsBUXiZplkXFIldhg7wP6v_kDSbgWcOM08zXtvDl9RvBTwVgDUp0lIXa44SOAgQJfcPCmOhKlrLnX15emfvRTPi5OUbgFACmGkqo-Ku8vghxlDiyx6drHvKN5gYFeEPBO6PGLIzGX2vvce6V5c4zghuTwTJhYDa-K0aLb71XfIPs3TFClj93Bx9DWGPi1q1w_syg0jW49T3rMNzX1mZ3Nov7HXzbw7XW_OmjfMR2Lb-JP_84J96DP17WP9RxzjDze8KJ55NyQ8eZzHxefN-rq54Nvd-WXzbstbVenMvdN1KzsJuqpWCoQSRrmy9Z0B5VQJ2IERJXayakuolV6hkqi90a5aaaG0Oi5eHXonit9nTNnexpnC8tLKsgKlammqxSUPrpZiSoTeTtSPjvZWgL0HZA-A7ALIPgCyZgmpQygt5nCD9Lf6P6nfaMSTpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450337285</pqid></control><display><type>article</type><title>Influence of Hydrogen Pre-treatment at Different Temperatures on Copper Oxide Supported on Carbonised Oil Palm Empty Fruit Bunch (CuO/EFBC) for Low-Temperature Nitric Oxide Removal</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ahmad, N. ; Zahari, F. M. ; Ibrahim, N.</creator><creatorcontrib>Ahmad, N. ; Zahari, F. M. ; Ibrahim, N.</creatorcontrib><description>Low-temperature nitric oxide (NO) removal by oil palm empty fruit bunch (EFBC) modified with phosphoric acid dehydration, followed by copper oxide (CuO) impregnation is a function of both surface chemical and physical properties of CuO/EFBC resulting from hydrogen (H 2 ) pre-treatment at different temperatures. Subjecting CuO/EFBC sample to H 2 pre-treatment at 400 °C initially reduces the NO adsorption capacity ( q ) (at C/C o = 0.95) from 1.65 to 1.57 mg/g although the BET specific surface area (S BET ) increases from 4.81 to 160 m 2 /g, due to surface predomination by acidic oxygenated groups (e.g. carboxyl, lactone and phenolic groups). At 500 °C, q increases to 5.67 mg/g as some of the acidic surface groups are decomposed and the S BET improves to 466 m 2 /g. Further increase in the temperature to 600 and 700 °C respectively enhances the S BET to 448 and 516 m 2 /g, and decomposes most of the acidic groups, leaving unsaturated C to react with H and form stable basic sites e.g. aldehyde, alkane, alkyl and aromatic groups more favourable for NO adsorption, thus giving rise to q (at C/C o = 0.5) to 41.01 and 62.74 mg/g, with stable performance for more than 2 h of experiment. In addition, higher pore volume, smaller pore size and smaller crystallite size of CuO, Cu 2 O and Cu 3 P sites are observed in samples pre-treated at high temperatures (600 and 700 °C), leading to a condition more auspicious for dissociative NO adsorption. Graphic Abstract</description><identifier>ISSN: 1877-2641</identifier><identifier>EISSN: 1877-265X</identifier><identifier>DOI: 10.1007/s12649-020-01064-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adsorption ; Aldehydes ; Alkanes ; Copper ; Copper oxides ; Crystallites ; Crystals ; Decomposition reactions ; Dehydration ; Engineering ; Environment ; Environmental Engineering/Biotechnology ; Fruits ; High temperature ; Industrial Pollution Prevention ; Low temperature ; Nitric oxide ; Original Paper ; Phenolic compounds ; Phenols ; Phosphoric acid ; Physical properties ; Pore size ; Porosity ; Pretreatment ; Renewable and Green Energy ; Surface chemistry ; Temperature ; Waste Management/Waste Technology</subject><ispartof>Waste and biomass valorization, 2020-10, Vol.11 (10), p.5561-5574</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-fa67c2d2065593013183a4cfd803a340ed0814ed25c407369e32e6f86a5961363</citedby><cites>FETCH-LOGICAL-c356t-fa67c2d2065593013183a4cfd803a340ed0814ed25c407369e32e6f86a5961363</cites><orcidid>0000-0002-3515-7812</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12649-020-01064-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12649-020-01064-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ahmad, N.</creatorcontrib><creatorcontrib>Zahari, F. M.</creatorcontrib><creatorcontrib>Ibrahim, N.</creatorcontrib><title>Influence of Hydrogen Pre-treatment at Different Temperatures on Copper Oxide Supported on Carbonised Oil Palm Empty Fruit Bunch (CuO/EFBC) for Low-Temperature Nitric Oxide Removal</title><title>Waste and biomass valorization</title><addtitle>Waste Biomass Valor</addtitle><description>Low-temperature nitric oxide (NO) removal by oil palm empty fruit bunch (EFBC) modified with phosphoric acid dehydration, followed by copper oxide (CuO) impregnation is a function of both surface chemical and physical properties of CuO/EFBC resulting from hydrogen (H 2 ) pre-treatment at different temperatures. Subjecting CuO/EFBC sample to H 2 pre-treatment at 400 °C initially reduces the NO adsorption capacity ( q ) (at C/C o = 0.95) from 1.65 to 1.57 mg/g although the BET specific surface area (S BET ) increases from 4.81 to 160 m 2 /g, due to surface predomination by acidic oxygenated groups (e.g. carboxyl, lactone and phenolic groups). At 500 °C, q increases to 5.67 mg/g as some of the acidic surface groups are decomposed and the S BET improves to 466 m 2 /g. Further increase in the temperature to 600 and 700 °C respectively enhances the S BET to 448 and 516 m 2 /g, and decomposes most of the acidic groups, leaving unsaturated C to react with H and form stable basic sites e.g. aldehyde, alkane, alkyl and aromatic groups more favourable for NO adsorption, thus giving rise to q (at C/C o = 0.5) to 41.01 and 62.74 mg/g, with stable performance for more than 2 h of experiment. In addition, higher pore volume, smaller pore size and smaller crystallite size of CuO, Cu 2 O and Cu 3 P sites are observed in samples pre-treated at high temperatures (600 and 700 °C), leading to a condition more auspicious for dissociative NO adsorption. Graphic Abstract</description><subject>Adsorption</subject><subject>Aldehydes</subject><subject>Alkanes</subject><subject>Copper</subject><subject>Copper oxides</subject><subject>Crystallites</subject><subject>Crystals</subject><subject>Decomposition reactions</subject><subject>Dehydration</subject><subject>Engineering</subject><subject>Environment</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Fruits</subject><subject>High temperature</subject><subject>Industrial Pollution Prevention</subject><subject>Low temperature</subject><subject>Nitric oxide</subject><subject>Original Paper</subject><subject>Phenolic compounds</subject><subject>Phenols</subject><subject>Phosphoric acid</subject><subject>Physical properties</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Pretreatment</subject><subject>Renewable and Green Energy</subject><subject>Surface chemistry</subject><subject>Temperature</subject><subject>Waste Management/Waste Technology</subject><issn>1877-2641</issn><issn>1877-265X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kUFv1DAQhSMEElXpH-BkiQscTMd24niPNOy2lVZsBUXiZplkXFIldhg7wP6v_kDSbgWcOM08zXtvDl9RvBTwVgDUp0lIXa44SOAgQJfcPCmOhKlrLnX15emfvRTPi5OUbgFACmGkqo-Ku8vghxlDiyx6drHvKN5gYFeEPBO6PGLIzGX2vvce6V5c4zghuTwTJhYDa-K0aLb71XfIPs3TFClj93Bx9DWGPi1q1w_syg0jW49T3rMNzX1mZ3Nov7HXzbw7XW_OmjfMR2Lb-JP_84J96DP17WP9RxzjDze8KJ55NyQ8eZzHxefN-rq54Nvd-WXzbstbVenMvdN1KzsJuqpWCoQSRrmy9Z0B5VQJ2IERJXayakuolV6hkqi90a5aaaG0Oi5eHXonit9nTNnexpnC8tLKsgKlammqxSUPrpZiSoTeTtSPjvZWgL0HZA-A7ALIPgCyZgmpQygt5nCD9Lf6P6nfaMSTpg</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Ahmad, N.</creator><creator>Zahari, F. M.</creator><creator>Ibrahim, N.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3515-7812</orcidid></search><sort><creationdate>20201001</creationdate><title>Influence of Hydrogen Pre-treatment at Different Temperatures on Copper Oxide Supported on Carbonised Oil Palm Empty Fruit Bunch (CuO/EFBC) for Low-Temperature Nitric Oxide Removal</title><author>Ahmad, N. ; Zahari, F. M. ; Ibrahim, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-fa67c2d2065593013183a4cfd803a340ed0814ed25c407369e32e6f86a5961363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorption</topic><topic>Aldehydes</topic><topic>Alkanes</topic><topic>Copper</topic><topic>Copper oxides</topic><topic>Crystallites</topic><topic>Crystals</topic><topic>Decomposition reactions</topic><topic>Dehydration</topic><topic>Engineering</topic><topic>Environment</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Fruits</topic><topic>High temperature</topic><topic>Industrial Pollution Prevention</topic><topic>Low temperature</topic><topic>Nitric oxide</topic><topic>Original Paper</topic><topic>Phenolic compounds</topic><topic>Phenols</topic><topic>Phosphoric acid</topic><topic>Physical properties</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Pretreatment</topic><topic>Renewable and Green Energy</topic><topic>Surface chemistry</topic><topic>Temperature</topic><topic>Waste Management/Waste Technology</topic><toplevel>online_resources</toplevel><creatorcontrib>Ahmad, N.</creatorcontrib><creatorcontrib>Zahari, F. M.</creatorcontrib><creatorcontrib>Ibrahim, N.</creatorcontrib><collection>CrossRef</collection><jtitle>Waste and biomass valorization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmad, N.</au><au>Zahari, F. M.</au><au>Ibrahim, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Hydrogen Pre-treatment at Different Temperatures on Copper Oxide Supported on Carbonised Oil Palm Empty Fruit Bunch (CuO/EFBC) for Low-Temperature Nitric Oxide Removal</atitle><jtitle>Waste and biomass valorization</jtitle><stitle>Waste Biomass Valor</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>11</volume><issue>10</issue><spage>5561</spage><epage>5574</epage><pages>5561-5574</pages><issn>1877-2641</issn><eissn>1877-265X</eissn><abstract>Low-temperature nitric oxide (NO) removal by oil palm empty fruit bunch (EFBC) modified with phosphoric acid dehydration, followed by copper oxide (CuO) impregnation is a function of both surface chemical and physical properties of CuO/EFBC resulting from hydrogen (H 2 ) pre-treatment at different temperatures. Subjecting CuO/EFBC sample to H 2 pre-treatment at 400 °C initially reduces the NO adsorption capacity ( q ) (at C/C o = 0.95) from 1.65 to 1.57 mg/g although the BET specific surface area (S BET ) increases from 4.81 to 160 m 2 /g, due to surface predomination by acidic oxygenated groups (e.g. carboxyl, lactone and phenolic groups). At 500 °C, q increases to 5.67 mg/g as some of the acidic surface groups are decomposed and the S BET improves to 466 m 2 /g. Further increase in the temperature to 600 and 700 °C respectively enhances the S BET to 448 and 516 m 2 /g, and decomposes most of the acidic groups, leaving unsaturated C to react with H and form stable basic sites e.g. aldehyde, alkane, alkyl and aromatic groups more favourable for NO adsorption, thus giving rise to q (at C/C o = 0.5) to 41.01 and 62.74 mg/g, with stable performance for more than 2 h of experiment. In addition, higher pore volume, smaller pore size and smaller crystallite size of CuO, Cu 2 O and Cu 3 P sites are observed in samples pre-treated at high temperatures (600 and 700 °C), leading to a condition more auspicious for dissociative NO adsorption. Graphic Abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s12649-020-01064-8</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3515-7812</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1877-2641
ispartof Waste and biomass valorization, 2020-10, Vol.11 (10), p.5561-5574
issn 1877-2641
1877-265X
language eng
recordid cdi_proquest_journals_2450337285
source SpringerLink Journals - AutoHoldings
subjects Adsorption
Aldehydes
Alkanes
Copper
Copper oxides
Crystallites
Crystals
Decomposition reactions
Dehydration
Engineering
Environment
Environmental Engineering/Biotechnology
Fruits
High temperature
Industrial Pollution Prevention
Low temperature
Nitric oxide
Original Paper
Phenolic compounds
Phenols
Phosphoric acid
Physical properties
Pore size
Porosity
Pretreatment
Renewable and Green Energy
Surface chemistry
Temperature
Waste Management/Waste Technology
title Influence of Hydrogen Pre-treatment at Different Temperatures on Copper Oxide Supported on Carbonised Oil Palm Empty Fruit Bunch (CuO/EFBC) for Low-Temperature Nitric Oxide Removal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A03%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Hydrogen%20Pre-treatment%20at%20Different%20Temperatures%20on%20Copper%20Oxide%20Supported%20on%20Carbonised%20Oil%20Palm%20Empty%20Fruit%20Bunch%20(CuO/EFBC)%20for%20Low-Temperature%20Nitric%20Oxide%20Removal&rft.jtitle=Waste%20and%20biomass%20valorization&rft.au=Ahmad,%20N.&rft.date=2020-10-01&rft.volume=11&rft.issue=10&rft.spage=5561&rft.epage=5574&rft.pages=5561-5574&rft.issn=1877-2641&rft.eissn=1877-265X&rft_id=info:doi/10.1007/s12649-020-01064-8&rft_dat=%3Cproquest_cross%3E2450337285%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450337285&rft_id=info:pmid/&rfr_iscdi=true