Flexible Wearable Pre-fractal Antennas for Personal High-Temperature Monitoring

This paper proposed a new flexible and wearable antennas design based on teragon pre-fractal geometry until the third level, for monitoring high-temperature in humans for wireless body area network operating band. The antennas were built in polyamide laminate dielectric material, which has suitable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless personal communications 2020-10, Vol.114 (3), p.1983-1998
Hauptverfasser: Silva Junior, Paulo F., Santana, Ewaldo E. C., Pinto, Mauro S. S., Freire, Raimundo C. S., Oliveira, Maciel A., Fontgalland, Glauco, Silva, Paulo H. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1998
container_issue 3
container_start_page 1983
container_title Wireless personal communications
container_volume 114
creator Silva Junior, Paulo F.
Santana, Ewaldo E. C.
Pinto, Mauro S. S.
Freire, Raimundo C. S.
Oliveira, Maciel A.
Fontgalland, Glauco
Silva, Paulo H. F.
description This paper proposed a new flexible and wearable antennas design based on teragon pre-fractal geometry until the third level, for monitoring high-temperature in humans for wireless body area network operating band. The antennas were built in polyamide laminate dielectric material, which has suitable thermal and mechanical resistance characteristics for application in wearable antennas. The antenna’s structure was generated by teragon pre-fractal geometry using a MATLAB code and simulated with commercial software ANSYS. The application of teragon geometry allows controlling the resonance frequencies and radiation characteristics in comparison to simple square geometry. Teragon level 3 has provided maximum resonance frequency reduction, about 142.4%. In comparison of simulated and measured results on-body we noted that variation of resonance frequency is directly proportional to the fractal level, with the increase of fractal level there is greater variation in the difference between the simulated and measured resonance frequency, close results of gain, and higher simulated SAR value of 0.0653 mW/kg (K = 2), being within standard indicated by international institutions such as FCC and IEEE.
doi_str_mv 10.1007/s11277-020-07458-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450324010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450324010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3514a139d20436c48d9fe60f834e7bbb3f668cb41dfb733147efb0fb749e007c3</originalsourceid><addsrcrecordid>eNp9UE1Lw0AUXETB-vEHPAU8r-5XssmxFGuFSnuo6G3ZTd_WlDSJb1PQf-_GCN48veExM8wMITec3XHG9H3gXGhNmWCUaZXmlJ2QCU-1oLlUb6dkwgpR0ExwcU4uQtgzFmWFmJDVvIbPytWQvIJFO4A1AvVoy97WybTpoWlsSHyLyRowtE38LqrdO93AoQO0_REheW6bqm-xanZX5MzbOsD1770kL_OHzWxBl6vHp9l0SUvJi57KlCvLZbEVTMmsVPm28JAxH9OCds5Jn2V56RTfeqel5EqDdyxiVUDsW8pLcjv6dth-HCH0Zt8eMYYLRqiUSaFiw8gSI6vENgQEbzqsDha_DGdmGM6Mw5k4nPkZzgwiOYpCNzQC_LP-R_UNajtweQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450324010</pqid></control><display><type>article</type><title>Flexible Wearable Pre-fractal Antennas for Personal High-Temperature Monitoring</title><source>SpringerLink Journals</source><creator>Silva Junior, Paulo F. ; Santana, Ewaldo E. C. ; Pinto, Mauro S. S. ; Freire, Raimundo C. S. ; Oliveira, Maciel A. ; Fontgalland, Glauco ; Silva, Paulo H. F.</creator><creatorcontrib>Silva Junior, Paulo F. ; Santana, Ewaldo E. C. ; Pinto, Mauro S. S. ; Freire, Raimundo C. S. ; Oliveira, Maciel A. ; Fontgalland, Glauco ; Silva, Paulo H. F.</creatorcontrib><description>This paper proposed a new flexible and wearable antennas design based on teragon pre-fractal geometry until the third level, for monitoring high-temperature in humans for wireless body area network operating band. The antennas were built in polyamide laminate dielectric material, which has suitable thermal and mechanical resistance characteristics for application in wearable antennas. The antenna’s structure was generated by teragon pre-fractal geometry using a MATLAB code and simulated with commercial software ANSYS. The application of teragon geometry allows controlling the resonance frequencies and radiation characteristics in comparison to simple square geometry. Teragon level 3 has provided maximum resonance frequency reduction, about 142.4%. In comparison of simulated and measured results on-body we noted that variation of resonance frequency is directly proportional to the fractal level, with the increase of fractal level there is greater variation in the difference between the simulated and measured resonance frequency, close results of gain, and higher simulated SAR value of 0.0653 mW/kg (K = 2), being within standard indicated by international institutions such as FCC and IEEE.</description><identifier>ISSN: 0929-6212</identifier><identifier>EISSN: 1572-834X</identifier><identifier>DOI: 10.1007/s11277-020-07458-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Antennas ; Body area networks ; CAD ; Communications Engineering ; Computer aided design ; Computer Communication Networks ; Engineering ; Fractal geometry ; Fractals ; Frequency variation ; Geometry ; High temperature ; Monitoring ; Networks ; Polyamide resins ; Resonance ; Signal,Image and Speech Processing ; Simulation ; Thermal resistance ; Wearable technology</subject><ispartof>Wireless personal communications, 2020-10, Vol.114 (3), p.1983-1998</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3514a139d20436c48d9fe60f834e7bbb3f668cb41dfb733147efb0fb749e007c3</citedby><cites>FETCH-LOGICAL-c319t-3514a139d20436c48d9fe60f834e7bbb3f668cb41dfb733147efb0fb749e007c3</cites><orcidid>0000-0001-6088-6446</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11277-020-07458-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11277-020-07458-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Silva Junior, Paulo F.</creatorcontrib><creatorcontrib>Santana, Ewaldo E. C.</creatorcontrib><creatorcontrib>Pinto, Mauro S. S.</creatorcontrib><creatorcontrib>Freire, Raimundo C. S.</creatorcontrib><creatorcontrib>Oliveira, Maciel A.</creatorcontrib><creatorcontrib>Fontgalland, Glauco</creatorcontrib><creatorcontrib>Silva, Paulo H. F.</creatorcontrib><title>Flexible Wearable Pre-fractal Antennas for Personal High-Temperature Monitoring</title><title>Wireless personal communications</title><addtitle>Wireless Pers Commun</addtitle><description>This paper proposed a new flexible and wearable antennas design based on teragon pre-fractal geometry until the third level, for monitoring high-temperature in humans for wireless body area network operating band. The antennas were built in polyamide laminate dielectric material, which has suitable thermal and mechanical resistance characteristics for application in wearable antennas. The antenna’s structure was generated by teragon pre-fractal geometry using a MATLAB code and simulated with commercial software ANSYS. The application of teragon geometry allows controlling the resonance frequencies and radiation characteristics in comparison to simple square geometry. Teragon level 3 has provided maximum resonance frequency reduction, about 142.4%. In comparison of simulated and measured results on-body we noted that variation of resonance frequency is directly proportional to the fractal level, with the increase of fractal level there is greater variation in the difference between the simulated and measured resonance frequency, close results of gain, and higher simulated SAR value of 0.0653 mW/kg (K = 2), being within standard indicated by international institutions such as FCC and IEEE.</description><subject>Antennas</subject><subject>Body area networks</subject><subject>CAD</subject><subject>Communications Engineering</subject><subject>Computer aided design</subject><subject>Computer Communication Networks</subject><subject>Engineering</subject><subject>Fractal geometry</subject><subject>Fractals</subject><subject>Frequency variation</subject><subject>Geometry</subject><subject>High temperature</subject><subject>Monitoring</subject><subject>Networks</subject><subject>Polyamide resins</subject><subject>Resonance</subject><subject>Signal,Image and Speech Processing</subject><subject>Simulation</subject><subject>Thermal resistance</subject><subject>Wearable technology</subject><issn>0929-6212</issn><issn>1572-834X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UE1Lw0AUXETB-vEHPAU8r-5XssmxFGuFSnuo6G3ZTd_WlDSJb1PQf-_GCN48veExM8wMITec3XHG9H3gXGhNmWCUaZXmlJ2QCU-1oLlUb6dkwgpR0ExwcU4uQtgzFmWFmJDVvIbPytWQvIJFO4A1AvVoy97WybTpoWlsSHyLyRowtE38LqrdO93AoQO0_REheW6bqm-xanZX5MzbOsD1770kL_OHzWxBl6vHp9l0SUvJi57KlCvLZbEVTMmsVPm28JAxH9OCds5Jn2V56RTfeqel5EqDdyxiVUDsW8pLcjv6dth-HCH0Zt8eMYYLRqiUSaFiw8gSI6vENgQEbzqsDha_DGdmGM6Mw5k4nPkZzgwiOYpCNzQC_LP-R_UNajtweQ</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Silva Junior, Paulo F.</creator><creator>Santana, Ewaldo E. C.</creator><creator>Pinto, Mauro S. S.</creator><creator>Freire, Raimundo C. S.</creator><creator>Oliveira, Maciel A.</creator><creator>Fontgalland, Glauco</creator><creator>Silva, Paulo H. F.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6088-6446</orcidid></search><sort><creationdate>20201001</creationdate><title>Flexible Wearable Pre-fractal Antennas for Personal High-Temperature Monitoring</title><author>Silva Junior, Paulo F. ; Santana, Ewaldo E. C. ; Pinto, Mauro S. S. ; Freire, Raimundo C. S. ; Oliveira, Maciel A. ; Fontgalland, Glauco ; Silva, Paulo H. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3514a139d20436c48d9fe60f834e7bbb3f668cb41dfb733147efb0fb749e007c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antennas</topic><topic>Body area networks</topic><topic>CAD</topic><topic>Communications Engineering</topic><topic>Computer aided design</topic><topic>Computer Communication Networks</topic><topic>Engineering</topic><topic>Fractal geometry</topic><topic>Fractals</topic><topic>Frequency variation</topic><topic>Geometry</topic><topic>High temperature</topic><topic>Monitoring</topic><topic>Networks</topic><topic>Polyamide resins</topic><topic>Resonance</topic><topic>Signal,Image and Speech Processing</topic><topic>Simulation</topic><topic>Thermal resistance</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva Junior, Paulo F.</creatorcontrib><creatorcontrib>Santana, Ewaldo E. C.</creatorcontrib><creatorcontrib>Pinto, Mauro S. S.</creatorcontrib><creatorcontrib>Freire, Raimundo C. S.</creatorcontrib><creatorcontrib>Oliveira, Maciel A.</creatorcontrib><creatorcontrib>Fontgalland, Glauco</creatorcontrib><creatorcontrib>Silva, Paulo H. F.</creatorcontrib><collection>CrossRef</collection><jtitle>Wireless personal communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva Junior, Paulo F.</au><au>Santana, Ewaldo E. C.</au><au>Pinto, Mauro S. S.</au><au>Freire, Raimundo C. S.</au><au>Oliveira, Maciel A.</au><au>Fontgalland, Glauco</au><au>Silva, Paulo H. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible Wearable Pre-fractal Antennas for Personal High-Temperature Monitoring</atitle><jtitle>Wireless personal communications</jtitle><stitle>Wireless Pers Commun</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>114</volume><issue>3</issue><spage>1983</spage><epage>1998</epage><pages>1983-1998</pages><issn>0929-6212</issn><eissn>1572-834X</eissn><abstract>This paper proposed a new flexible and wearable antennas design based on teragon pre-fractal geometry until the third level, for monitoring high-temperature in humans for wireless body area network operating band. The antennas were built in polyamide laminate dielectric material, which has suitable thermal and mechanical resistance characteristics for application in wearable antennas. The antenna’s structure was generated by teragon pre-fractal geometry using a MATLAB code and simulated with commercial software ANSYS. The application of teragon geometry allows controlling the resonance frequencies and radiation characteristics in comparison to simple square geometry. Teragon level 3 has provided maximum resonance frequency reduction, about 142.4%. In comparison of simulated and measured results on-body we noted that variation of resonance frequency is directly proportional to the fractal level, with the increase of fractal level there is greater variation in the difference between the simulated and measured resonance frequency, close results of gain, and higher simulated SAR value of 0.0653 mW/kg (K = 2), being within standard indicated by international institutions such as FCC and IEEE.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11277-020-07458-0</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6088-6446</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0929-6212
ispartof Wireless personal communications, 2020-10, Vol.114 (3), p.1983-1998
issn 0929-6212
1572-834X
language eng
recordid cdi_proquest_journals_2450324010
source SpringerLink Journals
subjects Antennas
Body area networks
CAD
Communications Engineering
Computer aided design
Computer Communication Networks
Engineering
Fractal geometry
Fractals
Frequency variation
Geometry
High temperature
Monitoring
Networks
Polyamide resins
Resonance
Signal,Image and Speech Processing
Simulation
Thermal resistance
Wearable technology
title Flexible Wearable Pre-fractal Antennas for Personal High-Temperature Monitoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A10%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20Wearable%20Pre-fractal%20Antennas%20for%20Personal%20High-Temperature%20Monitoring&rft.jtitle=Wireless%20personal%20communications&rft.au=Silva%20Junior,%20Paulo%20F.&rft.date=2020-10-01&rft.volume=114&rft.issue=3&rft.spage=1983&rft.epage=1998&rft.pages=1983-1998&rft.issn=0929-6212&rft.eissn=1572-834X&rft_id=info:doi/10.1007/s11277-020-07458-0&rft_dat=%3Cproquest_cross%3E2450324010%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450324010&rft_id=info:pmid/&rfr_iscdi=true