Flexible Wearable Pre-fractal Antennas for Personal High-Temperature Monitoring
This paper proposed a new flexible and wearable antennas design based on teragon pre-fractal geometry until the third level, for monitoring high-temperature in humans for wireless body area network operating band. The antennas were built in polyamide laminate dielectric material, which has suitable...
Gespeichert in:
Veröffentlicht in: | Wireless personal communications 2020-10, Vol.114 (3), p.1983-1998 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1998 |
---|---|
container_issue | 3 |
container_start_page | 1983 |
container_title | Wireless personal communications |
container_volume | 114 |
creator | Silva Junior, Paulo F. Santana, Ewaldo E. C. Pinto, Mauro S. S. Freire, Raimundo C. S. Oliveira, Maciel A. Fontgalland, Glauco Silva, Paulo H. F. |
description | This paper proposed a new flexible and wearable antennas design based on teragon pre-fractal geometry until the third level, for monitoring high-temperature in humans for wireless body area network operating band. The antennas were built in polyamide laminate dielectric material, which has suitable thermal and mechanical resistance characteristics for application in wearable antennas. The antenna’s structure was generated by teragon pre-fractal geometry using a MATLAB code and simulated with commercial software ANSYS. The application of teragon geometry allows controlling the resonance frequencies and radiation characteristics in comparison to simple square geometry. Teragon level 3 has provided maximum resonance frequency reduction, about 142.4%. In comparison of simulated and measured results on-body we noted that variation of resonance frequency is directly proportional to the fractal level, with the increase of fractal level there is greater variation in the difference between the simulated and measured resonance frequency, close results of gain, and higher simulated SAR value of 0.0653 mW/kg (K = 2), being within standard indicated by international institutions such as FCC and IEEE. |
doi_str_mv | 10.1007/s11277-020-07458-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450324010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450324010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3514a139d20436c48d9fe60f834e7bbb3f668cb41dfb733147efb0fb749e007c3</originalsourceid><addsrcrecordid>eNp9UE1Lw0AUXETB-vEHPAU8r-5XssmxFGuFSnuo6G3ZTd_WlDSJb1PQf-_GCN48veExM8wMITec3XHG9H3gXGhNmWCUaZXmlJ2QCU-1oLlUb6dkwgpR0ExwcU4uQtgzFmWFmJDVvIbPytWQvIJFO4A1AvVoy97WybTpoWlsSHyLyRowtE38LqrdO93AoQO0_REheW6bqm-xanZX5MzbOsD1770kL_OHzWxBl6vHp9l0SUvJi57KlCvLZbEVTMmsVPm28JAxH9OCds5Jn2V56RTfeqel5EqDdyxiVUDsW8pLcjv6dth-HCH0Zt8eMYYLRqiUSaFiw8gSI6vENgQEbzqsDha_DGdmGM6Mw5k4nPkZzgwiOYpCNzQC_LP-R_UNajtweQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450324010</pqid></control><display><type>article</type><title>Flexible Wearable Pre-fractal Antennas for Personal High-Temperature Monitoring</title><source>SpringerLink Journals</source><creator>Silva Junior, Paulo F. ; Santana, Ewaldo E. C. ; Pinto, Mauro S. S. ; Freire, Raimundo C. S. ; Oliveira, Maciel A. ; Fontgalland, Glauco ; Silva, Paulo H. F.</creator><creatorcontrib>Silva Junior, Paulo F. ; Santana, Ewaldo E. C. ; Pinto, Mauro S. S. ; Freire, Raimundo C. S. ; Oliveira, Maciel A. ; Fontgalland, Glauco ; Silva, Paulo H. F.</creatorcontrib><description>This paper proposed a new flexible and wearable antennas design based on teragon pre-fractal geometry until the third level, for monitoring high-temperature in humans for wireless body area network operating band. The antennas were built in polyamide laminate dielectric material, which has suitable thermal and mechanical resistance characteristics for application in wearable antennas. The antenna’s structure was generated by teragon pre-fractal geometry using a MATLAB code and simulated with commercial software ANSYS. The application of teragon geometry allows controlling the resonance frequencies and radiation characteristics in comparison to simple square geometry. Teragon level 3 has provided maximum resonance frequency reduction, about 142.4%. In comparison of simulated and measured results on-body we noted that variation of resonance frequency is directly proportional to the fractal level, with the increase of fractal level there is greater variation in the difference between the simulated and measured resonance frequency, close results of gain, and higher simulated SAR value of 0.0653 mW/kg (K = 2), being within standard indicated by international institutions such as FCC and IEEE.</description><identifier>ISSN: 0929-6212</identifier><identifier>EISSN: 1572-834X</identifier><identifier>DOI: 10.1007/s11277-020-07458-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Antennas ; Body area networks ; CAD ; Communications Engineering ; Computer aided design ; Computer Communication Networks ; Engineering ; Fractal geometry ; Fractals ; Frequency variation ; Geometry ; High temperature ; Monitoring ; Networks ; Polyamide resins ; Resonance ; Signal,Image and Speech Processing ; Simulation ; Thermal resistance ; Wearable technology</subject><ispartof>Wireless personal communications, 2020-10, Vol.114 (3), p.1983-1998</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3514a139d20436c48d9fe60f834e7bbb3f668cb41dfb733147efb0fb749e007c3</citedby><cites>FETCH-LOGICAL-c319t-3514a139d20436c48d9fe60f834e7bbb3f668cb41dfb733147efb0fb749e007c3</cites><orcidid>0000-0001-6088-6446</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11277-020-07458-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11277-020-07458-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Silva Junior, Paulo F.</creatorcontrib><creatorcontrib>Santana, Ewaldo E. C.</creatorcontrib><creatorcontrib>Pinto, Mauro S. S.</creatorcontrib><creatorcontrib>Freire, Raimundo C. S.</creatorcontrib><creatorcontrib>Oliveira, Maciel A.</creatorcontrib><creatorcontrib>Fontgalland, Glauco</creatorcontrib><creatorcontrib>Silva, Paulo H. F.</creatorcontrib><title>Flexible Wearable Pre-fractal Antennas for Personal High-Temperature Monitoring</title><title>Wireless personal communications</title><addtitle>Wireless Pers Commun</addtitle><description>This paper proposed a new flexible and wearable antennas design based on teragon pre-fractal geometry until the third level, for monitoring high-temperature in humans for wireless body area network operating band. The antennas were built in polyamide laminate dielectric material, which has suitable thermal and mechanical resistance characteristics for application in wearable antennas. The antenna’s structure was generated by teragon pre-fractal geometry using a MATLAB code and simulated with commercial software ANSYS. The application of teragon geometry allows controlling the resonance frequencies and radiation characteristics in comparison to simple square geometry. Teragon level 3 has provided maximum resonance frequency reduction, about 142.4%. In comparison of simulated and measured results on-body we noted that variation of resonance frequency is directly proportional to the fractal level, with the increase of fractal level there is greater variation in the difference between the simulated and measured resonance frequency, close results of gain, and higher simulated SAR value of 0.0653 mW/kg (K = 2), being within standard indicated by international institutions such as FCC and IEEE.</description><subject>Antennas</subject><subject>Body area networks</subject><subject>CAD</subject><subject>Communications Engineering</subject><subject>Computer aided design</subject><subject>Computer Communication Networks</subject><subject>Engineering</subject><subject>Fractal geometry</subject><subject>Fractals</subject><subject>Frequency variation</subject><subject>Geometry</subject><subject>High temperature</subject><subject>Monitoring</subject><subject>Networks</subject><subject>Polyamide resins</subject><subject>Resonance</subject><subject>Signal,Image and Speech Processing</subject><subject>Simulation</subject><subject>Thermal resistance</subject><subject>Wearable technology</subject><issn>0929-6212</issn><issn>1572-834X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UE1Lw0AUXETB-vEHPAU8r-5XssmxFGuFSnuo6G3ZTd_WlDSJb1PQf-_GCN48veExM8wMITec3XHG9H3gXGhNmWCUaZXmlJ2QCU-1oLlUb6dkwgpR0ExwcU4uQtgzFmWFmJDVvIbPytWQvIJFO4A1AvVoy97WybTpoWlsSHyLyRowtE38LqrdO93AoQO0_REheW6bqm-xanZX5MzbOsD1770kL_OHzWxBl6vHp9l0SUvJi57KlCvLZbEVTMmsVPm28JAxH9OCds5Jn2V56RTfeqel5EqDdyxiVUDsW8pLcjv6dth-HCH0Zt8eMYYLRqiUSaFiw8gSI6vENgQEbzqsDha_DGdmGM6Mw5k4nPkZzgwiOYpCNzQC_LP-R_UNajtweQ</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Silva Junior, Paulo F.</creator><creator>Santana, Ewaldo E. C.</creator><creator>Pinto, Mauro S. S.</creator><creator>Freire, Raimundo C. S.</creator><creator>Oliveira, Maciel A.</creator><creator>Fontgalland, Glauco</creator><creator>Silva, Paulo H. F.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6088-6446</orcidid></search><sort><creationdate>20201001</creationdate><title>Flexible Wearable Pre-fractal Antennas for Personal High-Temperature Monitoring</title><author>Silva Junior, Paulo F. ; Santana, Ewaldo E. C. ; Pinto, Mauro S. S. ; Freire, Raimundo C. S. ; Oliveira, Maciel A. ; Fontgalland, Glauco ; Silva, Paulo H. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3514a139d20436c48d9fe60f834e7bbb3f668cb41dfb733147efb0fb749e007c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antennas</topic><topic>Body area networks</topic><topic>CAD</topic><topic>Communications Engineering</topic><topic>Computer aided design</topic><topic>Computer Communication Networks</topic><topic>Engineering</topic><topic>Fractal geometry</topic><topic>Fractals</topic><topic>Frequency variation</topic><topic>Geometry</topic><topic>High temperature</topic><topic>Monitoring</topic><topic>Networks</topic><topic>Polyamide resins</topic><topic>Resonance</topic><topic>Signal,Image and Speech Processing</topic><topic>Simulation</topic><topic>Thermal resistance</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva Junior, Paulo F.</creatorcontrib><creatorcontrib>Santana, Ewaldo E. C.</creatorcontrib><creatorcontrib>Pinto, Mauro S. S.</creatorcontrib><creatorcontrib>Freire, Raimundo C. S.</creatorcontrib><creatorcontrib>Oliveira, Maciel A.</creatorcontrib><creatorcontrib>Fontgalland, Glauco</creatorcontrib><creatorcontrib>Silva, Paulo H. F.</creatorcontrib><collection>CrossRef</collection><jtitle>Wireless personal communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva Junior, Paulo F.</au><au>Santana, Ewaldo E. C.</au><au>Pinto, Mauro S. S.</au><au>Freire, Raimundo C. S.</au><au>Oliveira, Maciel A.</au><au>Fontgalland, Glauco</au><au>Silva, Paulo H. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible Wearable Pre-fractal Antennas for Personal High-Temperature Monitoring</atitle><jtitle>Wireless personal communications</jtitle><stitle>Wireless Pers Commun</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>114</volume><issue>3</issue><spage>1983</spage><epage>1998</epage><pages>1983-1998</pages><issn>0929-6212</issn><eissn>1572-834X</eissn><abstract>This paper proposed a new flexible and wearable antennas design based on teragon pre-fractal geometry until the third level, for monitoring high-temperature in humans for wireless body area network operating band. The antennas were built in polyamide laminate dielectric material, which has suitable thermal and mechanical resistance characteristics for application in wearable antennas. The antenna’s structure was generated by teragon pre-fractal geometry using a MATLAB code and simulated with commercial software ANSYS. The application of teragon geometry allows controlling the resonance frequencies and radiation characteristics in comparison to simple square geometry. Teragon level 3 has provided maximum resonance frequency reduction, about 142.4%. In comparison of simulated and measured results on-body we noted that variation of resonance frequency is directly proportional to the fractal level, with the increase of fractal level there is greater variation in the difference between the simulated and measured resonance frequency, close results of gain, and higher simulated SAR value of 0.0653 mW/kg (K = 2), being within standard indicated by international institutions such as FCC and IEEE.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11277-020-07458-0</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6088-6446</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0929-6212 |
ispartof | Wireless personal communications, 2020-10, Vol.114 (3), p.1983-1998 |
issn | 0929-6212 1572-834X |
language | eng |
recordid | cdi_proquest_journals_2450324010 |
source | SpringerLink Journals |
subjects | Antennas Body area networks CAD Communications Engineering Computer aided design Computer Communication Networks Engineering Fractal geometry Fractals Frequency variation Geometry High temperature Monitoring Networks Polyamide resins Resonance Signal,Image and Speech Processing Simulation Thermal resistance Wearable technology |
title | Flexible Wearable Pre-fractal Antennas for Personal High-Temperature Monitoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A10%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20Wearable%20Pre-fractal%20Antennas%20for%20Personal%20High-Temperature%20Monitoring&rft.jtitle=Wireless%20personal%20communications&rft.au=Silva%20Junior,%20Paulo%20F.&rft.date=2020-10-01&rft.volume=114&rft.issue=3&rft.spage=1983&rft.epage=1998&rft.pages=1983-1998&rft.issn=0929-6212&rft.eissn=1572-834X&rft_id=info:doi/10.1007/s11277-020-07458-0&rft_dat=%3Cproquest_cross%3E2450324010%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450324010&rft_id=info:pmid/&rfr_iscdi=true |