A note on Hang-Wang’s hemisphere rigidity theorem

Let ( M ,  g ) be a compact manifold with boundary and R i c g ≥ ( n - 1 ) g , Hang and Wang proved that ( M ,  g ) is isometric to the standard hemisphere if ∂ M is convex and isometric to S n - 1 ( 1 ) . We prove some rigidity theorems when ∂ M is isometric to a product manifold where one factor i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2020-12, Vol.296 (3-4), p.901-909
1. Verfasser: Lai, Mijia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 909
container_issue 3-4
container_start_page 901
container_title Mathematische Zeitschrift
container_volume 296
creator Lai, Mijia
description Let ( M ,  g ) be a compact manifold with boundary and R i c g ≥ ( n - 1 ) g , Hang and Wang proved that ( M ,  g ) is isometric to the standard hemisphere if ∂ M is convex and isometric to S n - 1 ( 1 ) . We prove some rigidity theorems when ∂ M is isometric to a product manifold where one factor is the standard sphere.
doi_str_mv 10.1007/s00209-020-02469-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450311875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450311875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-746ee4ec20e29f5df8369b09006584c1972ce994fbb21f5bc92d54ea0f387ab13</originalsourceid><addsrcrecordid>eNp9UMtKw0AUHUTBWv0BVwHXo3demcyyFLVCwY3icsjjTpJikjqTUrrzN_w9v8TRCO5c3HMX5wWHkEsG1wxA3wQADoZGiCdTQ_dHZMak4JRlXByTWeQVVZmWp-QshA1AJLWcEbFI-mHEZOiTVd7X9CXC5_tHSBrs2rBt0GPi27qt2vGQjA0OHrtzcuLy14AXv39Onu9un5Yrun68f1gu1rTkGkaqZYooseSA3DhVuUykpgADkKpMlsxoXqIx0hUFZ04VpeGVkpiDE5nOCybm5GrK3frhbYdhtJth5_tYablUIBjLtIoqPqlKP4Tg0dmtb7vcHywD-z2OncaxEezPOHYfTWIyhSjua_R_0f-4vgAW8GdB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450311875</pqid></control><display><type>article</type><title>A note on Hang-Wang’s hemisphere rigidity theorem</title><source>Springer Nature - Complete Springer Journals</source><creator>Lai, Mijia</creator><creatorcontrib>Lai, Mijia</creatorcontrib><description>Let ( M ,  g ) be a compact manifold with boundary and R i c g ≥ ( n - 1 ) g , Hang and Wang proved that ( M ,  g ) is isometric to the standard hemisphere if ∂ M is convex and isometric to S n - 1 ( 1 ) . We prove some rigidity theorems when ∂ M is isometric to a product manifold where one factor is the standard sphere.</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-020-02469-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Manifolds ; Mathematics ; Mathematics and Statistics ; Rigidity ; Theorems</subject><ispartof>Mathematische Zeitschrift, 2020-12, Vol.296 (3-4), p.901-909</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-746ee4ec20e29f5df8369b09006584c1972ce994fbb21f5bc92d54ea0f387ab13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00209-020-02469-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00209-020-02469-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lai, Mijia</creatorcontrib><title>A note on Hang-Wang’s hemisphere rigidity theorem</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>Let ( M ,  g ) be a compact manifold with boundary and R i c g ≥ ( n - 1 ) g , Hang and Wang proved that ( M ,  g ) is isometric to the standard hemisphere if ∂ M is convex and isometric to S n - 1 ( 1 ) . We prove some rigidity theorems when ∂ M is isometric to a product manifold where one factor is the standard sphere.</description><subject>Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Rigidity</subject><subject>Theorems</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKw0AUHUTBWv0BVwHXo3demcyyFLVCwY3icsjjTpJikjqTUrrzN_w9v8TRCO5c3HMX5wWHkEsG1wxA3wQADoZGiCdTQ_dHZMak4JRlXByTWeQVVZmWp-QshA1AJLWcEbFI-mHEZOiTVd7X9CXC5_tHSBrs2rBt0GPi27qt2vGQjA0OHrtzcuLy14AXv39Onu9un5Yrun68f1gu1rTkGkaqZYooseSA3DhVuUykpgADkKpMlsxoXqIx0hUFZ04VpeGVkpiDE5nOCybm5GrK3frhbYdhtJth5_tYablUIBjLtIoqPqlKP4Tg0dmtb7vcHywD-z2OncaxEezPOHYfTWIyhSjua_R_0f-4vgAW8GdB</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Lai, Mijia</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201201</creationdate><title>A note on Hang-Wang’s hemisphere rigidity theorem</title><author>Lai, Mijia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-746ee4ec20e29f5df8369b09006584c1972ce994fbb21f5bc92d54ea0f387ab13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Rigidity</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, Mijia</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, Mijia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A note on Hang-Wang’s hemisphere rigidity theorem</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>296</volume><issue>3-4</issue><spage>901</spage><epage>909</epage><pages>901-909</pages><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>Let ( M ,  g ) be a compact manifold with boundary and R i c g ≥ ( n - 1 ) g , Hang and Wang proved that ( M ,  g ) is isometric to the standard hemisphere if ∂ M is convex and isometric to S n - 1 ( 1 ) . We prove some rigidity theorems when ∂ M is isometric to a product manifold where one factor is the standard sphere.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-020-02469-w</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5874
ispartof Mathematische Zeitschrift, 2020-12, Vol.296 (3-4), p.901-909
issn 0025-5874
1432-1823
language eng
recordid cdi_proquest_journals_2450311875
source Springer Nature - Complete Springer Journals
subjects Manifolds
Mathematics
Mathematics and Statistics
Rigidity
Theorems
title A note on Hang-Wang’s hemisphere rigidity theorem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T19%3A23%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20note%20on%20Hang-Wang%E2%80%99s%20hemisphere%20rigidity%20theorem&rft.jtitle=Mathematische%20Zeitschrift&rft.au=Lai,%20Mijia&rft.date=2020-12-01&rft.volume=296&rft.issue=3-4&rft.spage=901&rft.epage=909&rft.pages=901-909&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-020-02469-w&rft_dat=%3Cproquest_cross%3E2450311875%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450311875&rft_id=info:pmid/&rfr_iscdi=true