Polarized endomorphisms of normal projective threefolds in arbitrary characteristic
Let X be a projective variety over an algebraically closed field k of arbitrary characteristic p ≥ 0 . A surjective endomorphism f of X is q -polarized if f ∗ H ∼ q H for some ample Cartier divisor H and integer q > 1 . Suppose f is separable and X is Q -Gorenstein and normal. We show that the an...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2020-10, Vol.378 (1-2), p.637-665 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 665 |
---|---|
container_issue | 1-2 |
container_start_page | 637 |
container_title | Mathematische annalen |
container_volume | 378 |
creator | Cascini, Paolo Meng, Sheng Zhang, De-Qi |
description | Let
X
be a projective variety over an algebraically closed field
k
of arbitrary characteristic
p
≥
0
. A surjective endomorphism
f
of
X
is
q
-polarized if
f
∗
H
∼
q
H
for some ample Cartier divisor
H
and integer
q
>
1
. Suppose
f
is separable and
X
is
Q
-Gorenstein and normal. We show that the anti-canonical divisor
-
K
X
is numerically equivalent to an effective
Q
-Cartier divisor, strengthening slightly the conclusion of Boucksom, de Fernex and Favre (Duke Math J 161(8):1455–1520,
2012
, Theorem C) and also covering singular varieties over an algebraically closed field of arbitrary characteristic. Suppose
f
is separable and
X
is normal. We show that the Albanese morphism of
X
is an algebraic fibre space and
f
induces polarized endomorphisms on the Albanese and also the Picard variety of
X
, and
K
X
being pseudo-effective and
Q
-Cartier means being a torsion
Q
-divisor. Let
f
Gal
:
X
¯
→
X
be the Galois closure of
f
. We show that if
p
>
5
and co-prime to
deg
f
Gal
then one can run the minimal model program (MMP)
f
-equivariantly, after replacing
f
by a positive power, for a mildly singular threefold
X
and reach a variety
Y
with torsion canonical divisor (and also with
Y
being a quasi-étale quotient of an abelian variety when
dim
(
Y
)
≤
2
). Along the way, we show that a power of
f
acts as a scalar multiplication on the Neron-Severi group of
X
(modulo torsion) when
X
is a smooth and rationally chain connected projective variety of dimension at most three. |
doi_str_mv | 10.1007/s00208-019-01877-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450309872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450309872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-1e6f02ca1c75de32de203a05d2cbba18e9c5e8fa1220a9e42cf4f2da77c14c993</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Bz9VJ0mzSoyz-A0FBPYdsOnGztM2adAX99EYrePMwzGHem3nzI-SUwTkDUBcZgIOugDWltFLVYo_MWC14xTSofTIrc1lJLdghOcp5AwACQM7I02PsbAqf2FIc2tjHtF2H3GcaPR1i6m1Htylu0I3hHem4Tog-dm2mYaA2rcKYbPqgbm2TdSOmkMfgjsmBt13Gk98-Jy_XV8_L2-r-4eZueXlfOaHlWDFceODOMqdki4K3yEFYkC13q5VlGhsnUXvLOAfbYM2drz1vrVKO1a5pxJycTXtLwrcd5tFs4i4N5aThtSwPNlrxouKTyqWYc0Jvtin0JbVhYL7hmQmeKfDMDzyzKCYxmXIRD6-Y_lb_4_oCo9x0Jw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450309872</pqid></control><display><type>article</type><title>Polarized endomorphisms of normal projective threefolds in arbitrary characteristic</title><source>SpringerLink Journals</source><creator>Cascini, Paolo ; Meng, Sheng ; Zhang, De-Qi</creator><creatorcontrib>Cascini, Paolo ; Meng, Sheng ; Zhang, De-Qi</creatorcontrib><description>Let
X
be a projective variety over an algebraically closed field
k
of arbitrary characteristic
p
≥
0
. A surjective endomorphism
f
of
X
is
q
-polarized if
f
∗
H
∼
q
H
for some ample Cartier divisor
H
and integer
q
>
1
. Suppose
f
is separable and
X
is
Q
-Gorenstein and normal. We show that the anti-canonical divisor
-
K
X
is numerically equivalent to an effective
Q
-Cartier divisor, strengthening slightly the conclusion of Boucksom, de Fernex and Favre (Duke Math J 161(8):1455–1520,
2012
, Theorem C) and also covering singular varieties over an algebraically closed field of arbitrary characteristic. Suppose
f
is separable and
X
is normal. We show that the Albanese morphism of
X
is an algebraic fibre space and
f
induces polarized endomorphisms on the Albanese and also the Picard variety of
X
, and
K
X
being pseudo-effective and
Q
-Cartier means being a torsion
Q
-divisor. Let
f
Gal
:
X
¯
→
X
be the Galois closure of
f
. We show that if
p
>
5
and co-prime to
deg
f
Gal
then one can run the minimal model program (MMP)
f
-equivariantly, after replacing
f
by a positive power, for a mildly singular threefold
X
and reach a variety
Y
with torsion canonical divisor (and also with
Y
being a quasi-étale quotient of an abelian variety when
dim
(
Y
)
≤
2
). Along the way, we show that a power of
f
acts as a scalar multiplication on the Neron-Severi group of
X
(modulo torsion) when
X
is a smooth and rationally chain connected projective variety of dimension at most three.</description><identifier>ISSN: 0025-5831</identifier><identifier>EISSN: 1432-1807</identifier><identifier>DOI: 10.1007/s00208-019-01877-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Mathematics ; Mathematics and Statistics ; Multiplication ; Quotients</subject><ispartof>Mathematische annalen, 2020-10, Vol.378 (1-2), p.637-665</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-1e6f02ca1c75de32de203a05d2cbba18e9c5e8fa1220a9e42cf4f2da77c14c993</citedby><cites>FETCH-LOGICAL-c385t-1e6f02ca1c75de32de203a05d2cbba18e9c5e8fa1220a9e42cf4f2da77c14c993</cites><orcidid>0000-0003-0139-645X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00208-019-01877-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00208-019-01877-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Cascini, Paolo</creatorcontrib><creatorcontrib>Meng, Sheng</creatorcontrib><creatorcontrib>Zhang, De-Qi</creatorcontrib><title>Polarized endomorphisms of normal projective threefolds in arbitrary characteristic</title><title>Mathematische annalen</title><addtitle>Math. Ann</addtitle><description>Let
X
be a projective variety over an algebraically closed field
k
of arbitrary characteristic
p
≥
0
. A surjective endomorphism
f
of
X
is
q
-polarized if
f
∗
H
∼
q
H
for some ample Cartier divisor
H
and integer
q
>
1
. Suppose
f
is separable and
X
is
Q
-Gorenstein and normal. We show that the anti-canonical divisor
-
K
X
is numerically equivalent to an effective
Q
-Cartier divisor, strengthening slightly the conclusion of Boucksom, de Fernex and Favre (Duke Math J 161(8):1455–1520,
2012
, Theorem C) and also covering singular varieties over an algebraically closed field of arbitrary characteristic. Suppose
f
is separable and
X
is normal. We show that the Albanese morphism of
X
is an algebraic fibre space and
f
induces polarized endomorphisms on the Albanese and also the Picard variety of
X
, and
K
X
being pseudo-effective and
Q
-Cartier means being a torsion
Q
-divisor. Let
f
Gal
:
X
¯
→
X
be the Galois closure of
f
. We show that if
p
>
5
and co-prime to
deg
f
Gal
then one can run the minimal model program (MMP)
f
-equivariantly, after replacing
f
by a positive power, for a mildly singular threefold
X
and reach a variety
Y
with torsion canonical divisor (and also with
Y
being a quasi-étale quotient of an abelian variety when
dim
(
Y
)
≤
2
). Along the way, we show that a power of
f
acts as a scalar multiplication on the Neron-Severi group of
X
(modulo torsion) when
X
is a smooth and rationally chain connected projective variety of dimension at most three.</description><subject>Algebra</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Multiplication</subject><subject>Quotients</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Bz9VJ0mzSoyz-A0FBPYdsOnGztM2adAX99EYrePMwzGHem3nzI-SUwTkDUBcZgIOugDWltFLVYo_MWC14xTSofTIrc1lJLdghOcp5AwACQM7I02PsbAqf2FIc2tjHtF2H3GcaPR1i6m1Htylu0I3hHem4Tog-dm2mYaA2rcKYbPqgbm2TdSOmkMfgjsmBt13Gk98-Jy_XV8_L2-r-4eZueXlfOaHlWDFceODOMqdki4K3yEFYkC13q5VlGhsnUXvLOAfbYM2drz1vrVKO1a5pxJycTXtLwrcd5tFs4i4N5aThtSwPNlrxouKTyqWYc0Jvtin0JbVhYL7hmQmeKfDMDzyzKCYxmXIRD6-Y_lb_4_oCo9x0Jw</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Cascini, Paolo</creator><creator>Meng, Sheng</creator><creator>Zhang, De-Qi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0139-645X</orcidid></search><sort><creationdate>20201001</creationdate><title>Polarized endomorphisms of normal projective threefolds in arbitrary characteristic</title><author>Cascini, Paolo ; Meng, Sheng ; Zhang, De-Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-1e6f02ca1c75de32de203a05d2cbba18e9c5e8fa1220a9e42cf4f2da77c14c993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Multiplication</topic><topic>Quotients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cascini, Paolo</creatorcontrib><creatorcontrib>Meng, Sheng</creatorcontrib><creatorcontrib>Zhang, De-Qi</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische annalen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cascini, Paolo</au><au>Meng, Sheng</au><au>Zhang, De-Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polarized endomorphisms of normal projective threefolds in arbitrary characteristic</atitle><jtitle>Mathematische annalen</jtitle><stitle>Math. Ann</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>378</volume><issue>1-2</issue><spage>637</spage><epage>665</epage><pages>637-665</pages><issn>0025-5831</issn><eissn>1432-1807</eissn><abstract>Let
X
be a projective variety over an algebraically closed field
k
of arbitrary characteristic
p
≥
0
. A surjective endomorphism
f
of
X
is
q
-polarized if
f
∗
H
∼
q
H
for some ample Cartier divisor
H
and integer
q
>
1
. Suppose
f
is separable and
X
is
Q
-Gorenstein and normal. We show that the anti-canonical divisor
-
K
X
is numerically equivalent to an effective
Q
-Cartier divisor, strengthening slightly the conclusion of Boucksom, de Fernex and Favre (Duke Math J 161(8):1455–1520,
2012
, Theorem C) and also covering singular varieties over an algebraically closed field of arbitrary characteristic. Suppose
f
is separable and
X
is normal. We show that the Albanese morphism of
X
is an algebraic fibre space and
f
induces polarized endomorphisms on the Albanese and also the Picard variety of
X
, and
K
X
being pseudo-effective and
Q
-Cartier means being a torsion
Q
-divisor. Let
f
Gal
:
X
¯
→
X
be the Galois closure of
f
. We show that if
p
>
5
and co-prime to
deg
f
Gal
then one can run the minimal model program (MMP)
f
-equivariantly, after replacing
f
by a positive power, for a mildly singular threefold
X
and reach a variety
Y
with torsion canonical divisor (and also with
Y
being a quasi-étale quotient of an abelian variety when
dim
(
Y
)
≤
2
). Along the way, we show that a power of
f
acts as a scalar multiplication on the Neron-Severi group of
X
(modulo torsion) when
X
is a smooth and rationally chain connected projective variety of dimension at most three.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00208-019-01877-6</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0003-0139-645X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5831 |
ispartof | Mathematische annalen, 2020-10, Vol.378 (1-2), p.637-665 |
issn | 0025-5831 1432-1807 |
language | eng |
recordid | cdi_proquest_journals_2450309872 |
source | SpringerLink Journals |
subjects | Algebra Mathematics Mathematics and Statistics Multiplication Quotients |
title | Polarized endomorphisms of normal projective threefolds in arbitrary characteristic |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T03%3A52%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polarized%20endomorphisms%20of%20normal%20projective%20threefolds%20in%20arbitrary%20characteristic&rft.jtitle=Mathematische%20annalen&rft.au=Cascini,%20Paolo&rft.date=2020-10-01&rft.volume=378&rft.issue=1-2&rft.spage=637&rft.epage=665&rft.pages=637-665&rft.issn=0025-5831&rft.eissn=1432-1807&rft_id=info:doi/10.1007/s00208-019-01877-6&rft_dat=%3Cproquest_cross%3E2450309872%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450309872&rft_id=info:pmid/&rfr_iscdi=true |