Superiorization methodology and perturbation resilience of inertial proximal gradient algorithm with application to signal recovery

In this paper, we construct a novel algorithm for solving non-smooth composite optimization problems. By using inertial technique, we propose a modified proximal gradient algorithm with outer perturbations, and under standard mild conditions, we obtain strong convergence results for finding a soluti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing 2020-12, Vol.76 (12), p.9456-9477
Hauptverfasser: Pakkaranang, Nuttapol, Kumam, Poom, Berinde, Vasile, Suleiman, Yusuf I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9477
container_issue 12
container_start_page 9456
container_title The Journal of supercomputing
container_volume 76
creator Pakkaranang, Nuttapol
Kumam, Poom
Berinde, Vasile
Suleiman, Yusuf I.
description In this paper, we construct a novel algorithm for solving non-smooth composite optimization problems. By using inertial technique, we propose a modified proximal gradient algorithm with outer perturbations, and under standard mild conditions, we obtain strong convergence results for finding a solution of composite optimization problem. Based on bounded perturbation resilience, we present our proposed algorithm with the superiorization method and apply it to image recovery problem. Finally, we provide the numerical experiments to show efficiency of the proposed algorithm and comparison with previously known algorithms in signal recovery.
doi_str_mv 10.1007/s11227-020-03215-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450308579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450308579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f6fb422baf39ed200ba1cc107565fe48cadaca9b4aa8ca78e2fd70e2578b31893</originalsourceid><addsrcrecordid>eNp9kM1OxCAUhYnRxHH0BVyRuK5eoB3apZn4l5i4UNeEUugw6ZQKVJ3Z-uIy1sSdG7jJd87JvQehcwKXBIBfBUIo5RlQyIBRUmS7AzQjBWcZ5GV-iGZQJVQWOT1GJyGsASBnnM3Q1_M4aG-dtzsZrevxRseVa1zn2i2WfYMTjaOvJ-h1sJ3VvdLYGWz7xKzs8ODdp92kofWySThi2bUpMq42-CO9WA5DZ9WUER0Otu2T2mvl3rXfnqIjI7ugz37_OXq9vXlZ3mePT3cPy-vHTDFSxcwsTJ1TWkvDKt1QgFoSpQjwYlEYnZdKNlLJqs6lTDMvNTUNB00LXtaMlBWbo4spN-37NuoQxdqNPm0SBM0LYFAWfK-ik0p5F4LXRgw-Hee3goDYly2mskUqW_yULXbJxCZTSOK-1f4v-h_XN_Kqh90</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450308579</pqid></control><display><type>article</type><title>Superiorization methodology and perturbation resilience of inertial proximal gradient algorithm with application to signal recovery</title><source>SpringerLink (Online service)</source><creator>Pakkaranang, Nuttapol ; Kumam, Poom ; Berinde, Vasile ; Suleiman, Yusuf I.</creator><creatorcontrib>Pakkaranang, Nuttapol ; Kumam, Poom ; Berinde, Vasile ; Suleiman, Yusuf I.</creatorcontrib><description>In this paper, we construct a novel algorithm for solving non-smooth composite optimization problems. By using inertial technique, we propose a modified proximal gradient algorithm with outer perturbations, and under standard mild conditions, we obtain strong convergence results for finding a solution of composite optimization problem. Based on bounded perturbation resilience, we present our proposed algorithm with the superiorization method and apply it to image recovery problem. Finally, we provide the numerical experiments to show efficiency of the proposed algorithm and comparison with previously known algorithms in signal recovery.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-020-03215-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Compilers ; Computer Science ; High Performance Computing in Science and Engineering - CMMSE-2019 ; Interpreters ; Optimization ; Perturbation ; Processor Architectures ; Programming Languages ; Recovery ; Resilience ; Signal reconstruction</subject><ispartof>The Journal of supercomputing, 2020-12, Vol.76 (12), p.9456-9477</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f6fb422baf39ed200ba1cc107565fe48cadaca9b4aa8ca78e2fd70e2578b31893</citedby><cites>FETCH-LOGICAL-c319t-f6fb422baf39ed200ba1cc107565fe48cadaca9b4aa8ca78e2fd70e2578b31893</cites><orcidid>0000-0002-5463-4581</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-020-03215-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-020-03215-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Pakkaranang, Nuttapol</creatorcontrib><creatorcontrib>Kumam, Poom</creatorcontrib><creatorcontrib>Berinde, Vasile</creatorcontrib><creatorcontrib>Suleiman, Yusuf I.</creatorcontrib><title>Superiorization methodology and perturbation resilience of inertial proximal gradient algorithm with application to signal recovery</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>In this paper, we construct a novel algorithm for solving non-smooth composite optimization problems. By using inertial technique, we propose a modified proximal gradient algorithm with outer perturbations, and under standard mild conditions, we obtain strong convergence results for finding a solution of composite optimization problem. Based on bounded perturbation resilience, we present our proposed algorithm with the superiorization method and apply it to image recovery problem. Finally, we provide the numerical experiments to show efficiency of the proposed algorithm and comparison with previously known algorithms in signal recovery.</description><subject>Algorithms</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>High Performance Computing in Science and Engineering - CMMSE-2019</subject><subject>Interpreters</subject><subject>Optimization</subject><subject>Perturbation</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Recovery</subject><subject>Resilience</subject><subject>Signal reconstruction</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OxCAUhYnRxHH0BVyRuK5eoB3apZn4l5i4UNeEUugw6ZQKVJ3Z-uIy1sSdG7jJd87JvQehcwKXBIBfBUIo5RlQyIBRUmS7AzQjBWcZ5GV-iGZQJVQWOT1GJyGsASBnnM3Q1_M4aG-dtzsZrevxRseVa1zn2i2WfYMTjaOvJ-h1sJ3VvdLYGWz7xKzs8ODdp92kofWySThi2bUpMq42-CO9WA5DZ9WUER0Otu2T2mvl3rXfnqIjI7ugz37_OXq9vXlZ3mePT3cPy-vHTDFSxcwsTJ1TWkvDKt1QgFoSpQjwYlEYnZdKNlLJqs6lTDMvNTUNB00LXtaMlBWbo4spN-37NuoQxdqNPm0SBM0LYFAWfK-ik0p5F4LXRgw-Hee3goDYly2mskUqW_yULXbJxCZTSOK-1f4v-h_XN_Kqh90</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Pakkaranang, Nuttapol</creator><creator>Kumam, Poom</creator><creator>Berinde, Vasile</creator><creator>Suleiman, Yusuf I.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5463-4581</orcidid></search><sort><creationdate>20201201</creationdate><title>Superiorization methodology and perturbation resilience of inertial proximal gradient algorithm with application to signal recovery</title><author>Pakkaranang, Nuttapol ; Kumam, Poom ; Berinde, Vasile ; Suleiman, Yusuf I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f6fb422baf39ed200ba1cc107565fe48cadaca9b4aa8ca78e2fd70e2578b31893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>High Performance Computing in Science and Engineering - CMMSE-2019</topic><topic>Interpreters</topic><topic>Optimization</topic><topic>Perturbation</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Recovery</topic><topic>Resilience</topic><topic>Signal reconstruction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pakkaranang, Nuttapol</creatorcontrib><creatorcontrib>Kumam, Poom</creatorcontrib><creatorcontrib>Berinde, Vasile</creatorcontrib><creatorcontrib>Suleiman, Yusuf I.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pakkaranang, Nuttapol</au><au>Kumam, Poom</au><au>Berinde, Vasile</au><au>Suleiman, Yusuf I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superiorization methodology and perturbation resilience of inertial proximal gradient algorithm with application to signal recovery</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>76</volume><issue>12</issue><spage>9456</spage><epage>9477</epage><pages>9456-9477</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>In this paper, we construct a novel algorithm for solving non-smooth composite optimization problems. By using inertial technique, we propose a modified proximal gradient algorithm with outer perturbations, and under standard mild conditions, we obtain strong convergence results for finding a solution of composite optimization problem. Based on bounded perturbation resilience, we present our proposed algorithm with the superiorization method and apply it to image recovery problem. Finally, we provide the numerical experiments to show efficiency of the proposed algorithm and comparison with previously known algorithms in signal recovery.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-020-03215-z</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-5463-4581</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0920-8542
ispartof The Journal of supercomputing, 2020-12, Vol.76 (12), p.9456-9477
issn 0920-8542
1573-0484
language eng
recordid cdi_proquest_journals_2450308579
source SpringerLink (Online service)
subjects Algorithms
Compilers
Computer Science
High Performance Computing in Science and Engineering - CMMSE-2019
Interpreters
Optimization
Perturbation
Processor Architectures
Programming Languages
Recovery
Resilience
Signal reconstruction
title Superiorization methodology and perturbation resilience of inertial proximal gradient algorithm with application to signal recovery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A53%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superiorization%20methodology%20and%20perturbation%20resilience%20of%20inertial%20proximal%20gradient%20algorithm%20with%20application%20to%20signal%20recovery&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Pakkaranang,%20Nuttapol&rft.date=2020-12-01&rft.volume=76&rft.issue=12&rft.spage=9456&rft.epage=9477&rft.pages=9456-9477&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-020-03215-z&rft_dat=%3Cproquest_cross%3E2450308579%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450308579&rft_id=info:pmid/&rfr_iscdi=true