Self-driving database systems: a conceptual approach

Challenges for self-driving database systems, which tune their physical design and configuration autonomously, are manifold: Such systems have to anticipate future workloads, find robust configurations efficiently, and incorporate knowledge gained by previous actions into later decisions. We present...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Distributed and parallel databases : an international journal 2020-12, Vol.38 (4), p.795-817
Hauptverfasser: Kossmann, Jan, Schlosser, Rainer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 817
container_issue 4
container_start_page 795
container_title Distributed and parallel databases : an international journal
container_volume 38
creator Kossmann, Jan
Schlosser, Rainer
description Challenges for self-driving database systems, which tune their physical design and configuration autonomously, are manifold: Such systems have to anticipate future workloads, find robust configurations efficiently, and incorporate knowledge gained by previous actions into later decisions. We present a component-based framework for self-driving database systems that enables database integration and development of self-managing functionality with low overhead by relying on separation of concerns. By keeping the components of the framework reusable and exchangeable, experiments are simplified, which promotes further research in that area. Moreover, to optimize multiple mutually dependent features, e.g., index selection and compression configurations, we propose a linear programming (LP) based algorithm to derive an efficient tuning order automatically. Afterwards, we demonstrate the applicability and scalability of our approach with reproducible examples.
doi_str_mv 10.1007/s10619-020-07288-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450272379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450272379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-a711da04054cb604d257efe09bf6843f8c186f3759685ff85212ff8a3bf06be13</originalsourceid><addsrcrecordid>eNp9kMFKAzEURYMoWKs_4GrAdfQlmeRl3EnRKhRcqOuQySS1pZ0Zk6mlf290BHeu7ubce-EQcsngmgHgTWKgWEWBAwXkWtP9EZkwiYKiRH1MJlBxRTVqfkrOUloDQIUMJ6R88ZtAm7j6XLXLorGDrW3yRTqkwW_TbWEL17XO98PObgrb97Gz7v2cnAS7Sf7iN6fk7eH-dfZIF8_zp9ndgjqhxEAtMtZYKEGWrlZQNlyiDx6qOihdiqAd0yoIlJXSMgQtOeM5rKgDqNozMSVX426-_dj5NJh1t4ttvjS8lMCRC6wyxUfKxS6l6IPp42pr48EwMN92zGjHZDvmx47Z55IYSynD7dLHv-l_Wl9Gr2dH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450272379</pqid></control><display><type>article</type><title>Self-driving database systems: a conceptual approach</title><source>Springer Nature - Complete Springer Journals</source><creator>Kossmann, Jan ; Schlosser, Rainer</creator><creatorcontrib>Kossmann, Jan ; Schlosser, Rainer</creatorcontrib><description>Challenges for self-driving database systems, which tune their physical design and configuration autonomously, are manifold: Such systems have to anticipate future workloads, find robust configurations efficiently, and incorporate knowledge gained by previous actions into later decisions. We present a component-based framework for self-driving database systems that enables database integration and development of self-managing functionality with low overhead by relying on separation of concerns. By keeping the components of the framework reusable and exchangeable, experiments are simplified, which promotes further research in that area. Moreover, to optimize multiple mutually dependent features, e.g., index selection and compression configurations, we propose a linear programming (LP) based algorithm to derive an efficient tuning order automatically. Afterwards, we demonstrate the applicability and scalability of our approach with reproducible examples.</description><identifier>ISSN: 0926-8782</identifier><identifier>EISSN: 1573-7578</identifier><identifier>DOI: 10.1007/s10619-020-07288-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computer Science ; Configuration management ; Data Structures ; Database Management ; Information Systems Applications (incl.Internet) ; Linear programming ; Memory Structures ; Operating Systems ; Reusable components ; Special Issue on Self-Managing and Hardware-Optimized Database Systems</subject><ispartof>Distributed and parallel databases : an international journal, 2020-12, Vol.38 (4), p.795-817</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-a711da04054cb604d257efe09bf6843f8c186f3759685ff85212ff8a3bf06be13</citedby><cites>FETCH-LOGICAL-c363t-a711da04054cb604d257efe09bf6843f8c186f3759685ff85212ff8a3bf06be13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10619-020-07288-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10619-020-07288-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Kossmann, Jan</creatorcontrib><creatorcontrib>Schlosser, Rainer</creatorcontrib><title>Self-driving database systems: a conceptual approach</title><title>Distributed and parallel databases : an international journal</title><addtitle>Distrib Parallel Databases</addtitle><description>Challenges for self-driving database systems, which tune their physical design and configuration autonomously, are manifold: Such systems have to anticipate future workloads, find robust configurations efficiently, and incorporate knowledge gained by previous actions into later decisions. We present a component-based framework for self-driving database systems that enables database integration and development of self-managing functionality with low overhead by relying on separation of concerns. By keeping the components of the framework reusable and exchangeable, experiments are simplified, which promotes further research in that area. Moreover, to optimize multiple mutually dependent features, e.g., index selection and compression configurations, we propose a linear programming (LP) based algorithm to derive an efficient tuning order automatically. Afterwards, we demonstrate the applicability and scalability of our approach with reproducible examples.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Configuration management</subject><subject>Data Structures</subject><subject>Database Management</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Linear programming</subject><subject>Memory Structures</subject><subject>Operating Systems</subject><subject>Reusable components</subject><subject>Special Issue on Self-Managing and Hardware-Optimized Database Systems</subject><issn>0926-8782</issn><issn>1573-7578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMFKAzEURYMoWKs_4GrAdfQlmeRl3EnRKhRcqOuQySS1pZ0Zk6mlf290BHeu7ubce-EQcsngmgHgTWKgWEWBAwXkWtP9EZkwiYKiRH1MJlBxRTVqfkrOUloDQIUMJ6R88ZtAm7j6XLXLorGDrW3yRTqkwW_TbWEL17XO98PObgrb97Gz7v2cnAS7Sf7iN6fk7eH-dfZIF8_zp9ndgjqhxEAtMtZYKEGWrlZQNlyiDx6qOihdiqAd0yoIlJXSMgQtOeM5rKgDqNozMSVX426-_dj5NJh1t4ttvjS8lMCRC6wyxUfKxS6l6IPp42pr48EwMN92zGjHZDvmx47Z55IYSynD7dLHv-l_Wl9Gr2dH</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Kossmann, Jan</creator><creator>Schlosser, Rainer</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201201</creationdate><title>Self-driving database systems: a conceptual approach</title><author>Kossmann, Jan ; Schlosser, Rainer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-a711da04054cb604d257efe09bf6843f8c186f3759685ff85212ff8a3bf06be13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Configuration management</topic><topic>Data Structures</topic><topic>Database Management</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Linear programming</topic><topic>Memory Structures</topic><topic>Operating Systems</topic><topic>Reusable components</topic><topic>Special Issue on Self-Managing and Hardware-Optimized Database Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kossmann, Jan</creatorcontrib><creatorcontrib>Schlosser, Rainer</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Distributed and parallel databases : an international journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kossmann, Jan</au><au>Schlosser, Rainer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-driving database systems: a conceptual approach</atitle><jtitle>Distributed and parallel databases : an international journal</jtitle><stitle>Distrib Parallel Databases</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>38</volume><issue>4</issue><spage>795</spage><epage>817</epage><pages>795-817</pages><issn>0926-8782</issn><eissn>1573-7578</eissn><abstract>Challenges for self-driving database systems, which tune their physical design and configuration autonomously, are manifold: Such systems have to anticipate future workloads, find robust configurations efficiently, and incorporate knowledge gained by previous actions into later decisions. We present a component-based framework for self-driving database systems that enables database integration and development of self-managing functionality with low overhead by relying on separation of concerns. By keeping the components of the framework reusable and exchangeable, experiments are simplified, which promotes further research in that area. Moreover, to optimize multiple mutually dependent features, e.g., index selection and compression configurations, we propose a linear programming (LP) based algorithm to derive an efficient tuning order automatically. Afterwards, we demonstrate the applicability and scalability of our approach with reproducible examples.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10619-020-07288-w</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0926-8782
ispartof Distributed and parallel databases : an international journal, 2020-12, Vol.38 (4), p.795-817
issn 0926-8782
1573-7578
language eng
recordid cdi_proquest_journals_2450272379
source Springer Nature - Complete Springer Journals
subjects Algorithms
Computer Science
Configuration management
Data Structures
Database Management
Information Systems Applications (incl.Internet)
Linear programming
Memory Structures
Operating Systems
Reusable components
Special Issue on Self-Managing and Hardware-Optimized Database Systems
title Self-driving database systems: a conceptual approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T02%3A57%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-driving%20database%20systems:%20a%20conceptual%20approach&rft.jtitle=Distributed%20and%20parallel%20databases%20:%20an%20international%20journal&rft.au=Kossmann,%20Jan&rft.date=2020-12-01&rft.volume=38&rft.issue=4&rft.spage=795&rft.epage=817&rft.pages=795-817&rft.issn=0926-8782&rft.eissn=1573-7578&rft_id=info:doi/10.1007/s10619-020-07288-w&rft_dat=%3Cproquest_cross%3E2450272379%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450272379&rft_id=info:pmid/&rfr_iscdi=true