Self-driving database systems: a conceptual approach
Challenges for self-driving database systems, which tune their physical design and configuration autonomously, are manifold: Such systems have to anticipate future workloads, find robust configurations efficiently, and incorporate knowledge gained by previous actions into later decisions. We present...
Gespeichert in:
Veröffentlicht in: | Distributed and parallel databases : an international journal 2020-12, Vol.38 (4), p.795-817 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 817 |
---|---|
container_issue | 4 |
container_start_page | 795 |
container_title | Distributed and parallel databases : an international journal |
container_volume | 38 |
creator | Kossmann, Jan Schlosser, Rainer |
description | Challenges for self-driving database systems, which tune their physical design and configuration autonomously, are manifold: Such systems have to anticipate future workloads, find robust configurations efficiently, and incorporate knowledge gained by previous actions into later decisions. We present a component-based framework for self-driving database systems that enables database integration and development of self-managing functionality with low overhead by relying on separation of concerns. By keeping the components of the framework reusable and exchangeable, experiments are simplified, which promotes further research in that area. Moreover, to optimize multiple mutually dependent features, e.g., index selection and compression configurations, we propose a linear programming (LP) based algorithm to derive an efficient tuning order automatically. Afterwards, we demonstrate the applicability and scalability of our approach with reproducible examples. |
doi_str_mv | 10.1007/s10619-020-07288-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450272379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450272379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-a711da04054cb604d257efe09bf6843f8c186f3759685ff85212ff8a3bf06be13</originalsourceid><addsrcrecordid>eNp9kMFKAzEURYMoWKs_4GrAdfQlmeRl3EnRKhRcqOuQySS1pZ0Zk6mlf290BHeu7ubce-EQcsngmgHgTWKgWEWBAwXkWtP9EZkwiYKiRH1MJlBxRTVqfkrOUloDQIUMJ6R88ZtAm7j6XLXLorGDrW3yRTqkwW_TbWEL17XO98PObgrb97Gz7v2cnAS7Sf7iN6fk7eH-dfZIF8_zp9ndgjqhxEAtMtZYKEGWrlZQNlyiDx6qOihdiqAd0yoIlJXSMgQtOeM5rKgDqNozMSVX426-_dj5NJh1t4ttvjS8lMCRC6wyxUfKxS6l6IPp42pr48EwMN92zGjHZDvmx47Z55IYSynD7dLHv-l_Wl9Gr2dH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450272379</pqid></control><display><type>article</type><title>Self-driving database systems: a conceptual approach</title><source>Springer Nature - Complete Springer Journals</source><creator>Kossmann, Jan ; Schlosser, Rainer</creator><creatorcontrib>Kossmann, Jan ; Schlosser, Rainer</creatorcontrib><description>Challenges for self-driving database systems, which tune their physical design and configuration autonomously, are manifold: Such systems have to anticipate future workloads, find robust configurations efficiently, and incorporate knowledge gained by previous actions into later decisions. We present a component-based framework for self-driving database systems that enables database integration and development of self-managing functionality with low overhead by relying on separation of concerns. By keeping the components of the framework reusable and exchangeable, experiments are simplified, which promotes further research in that area. Moreover, to optimize multiple mutually dependent features, e.g., index selection and compression configurations, we propose a linear programming (LP) based algorithm to derive an efficient tuning order automatically. Afterwards, we demonstrate the applicability and scalability of our approach with reproducible examples.</description><identifier>ISSN: 0926-8782</identifier><identifier>EISSN: 1573-7578</identifier><identifier>DOI: 10.1007/s10619-020-07288-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computer Science ; Configuration management ; Data Structures ; Database Management ; Information Systems Applications (incl.Internet) ; Linear programming ; Memory Structures ; Operating Systems ; Reusable components ; Special Issue on Self-Managing and Hardware-Optimized Database Systems</subject><ispartof>Distributed and parallel databases : an international journal, 2020-12, Vol.38 (4), p.795-817</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-a711da04054cb604d257efe09bf6843f8c186f3759685ff85212ff8a3bf06be13</citedby><cites>FETCH-LOGICAL-c363t-a711da04054cb604d257efe09bf6843f8c186f3759685ff85212ff8a3bf06be13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10619-020-07288-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10619-020-07288-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Kossmann, Jan</creatorcontrib><creatorcontrib>Schlosser, Rainer</creatorcontrib><title>Self-driving database systems: a conceptual approach</title><title>Distributed and parallel databases : an international journal</title><addtitle>Distrib Parallel Databases</addtitle><description>Challenges for self-driving database systems, which tune their physical design and configuration autonomously, are manifold: Such systems have to anticipate future workloads, find robust configurations efficiently, and incorporate knowledge gained by previous actions into later decisions. We present a component-based framework for self-driving database systems that enables database integration and development of self-managing functionality with low overhead by relying on separation of concerns. By keeping the components of the framework reusable and exchangeable, experiments are simplified, which promotes further research in that area. Moreover, to optimize multiple mutually dependent features, e.g., index selection and compression configurations, we propose a linear programming (LP) based algorithm to derive an efficient tuning order automatically. Afterwards, we demonstrate the applicability and scalability of our approach with reproducible examples.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Configuration management</subject><subject>Data Structures</subject><subject>Database Management</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Linear programming</subject><subject>Memory Structures</subject><subject>Operating Systems</subject><subject>Reusable components</subject><subject>Special Issue on Self-Managing and Hardware-Optimized Database Systems</subject><issn>0926-8782</issn><issn>1573-7578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMFKAzEURYMoWKs_4GrAdfQlmeRl3EnRKhRcqOuQySS1pZ0Zk6mlf290BHeu7ubce-EQcsngmgHgTWKgWEWBAwXkWtP9EZkwiYKiRH1MJlBxRTVqfkrOUloDQIUMJ6R88ZtAm7j6XLXLorGDrW3yRTqkwW_TbWEL17XO98PObgrb97Gz7v2cnAS7Sf7iN6fk7eH-dfZIF8_zp9ndgjqhxEAtMtZYKEGWrlZQNlyiDx6qOihdiqAd0yoIlJXSMgQtOeM5rKgDqNozMSVX426-_dj5NJh1t4ttvjS8lMCRC6wyxUfKxS6l6IPp42pr48EwMN92zGjHZDvmx47Z55IYSynD7dLHv-l_Wl9Gr2dH</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Kossmann, Jan</creator><creator>Schlosser, Rainer</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201201</creationdate><title>Self-driving database systems: a conceptual approach</title><author>Kossmann, Jan ; Schlosser, Rainer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-a711da04054cb604d257efe09bf6843f8c186f3759685ff85212ff8a3bf06be13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Configuration management</topic><topic>Data Structures</topic><topic>Database Management</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Linear programming</topic><topic>Memory Structures</topic><topic>Operating Systems</topic><topic>Reusable components</topic><topic>Special Issue on Self-Managing and Hardware-Optimized Database Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kossmann, Jan</creatorcontrib><creatorcontrib>Schlosser, Rainer</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Distributed and parallel databases : an international journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kossmann, Jan</au><au>Schlosser, Rainer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-driving database systems: a conceptual approach</atitle><jtitle>Distributed and parallel databases : an international journal</jtitle><stitle>Distrib Parallel Databases</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>38</volume><issue>4</issue><spage>795</spage><epage>817</epage><pages>795-817</pages><issn>0926-8782</issn><eissn>1573-7578</eissn><abstract>Challenges for self-driving database systems, which tune their physical design and configuration autonomously, are manifold: Such systems have to anticipate future workloads, find robust configurations efficiently, and incorporate knowledge gained by previous actions into later decisions. We present a component-based framework for self-driving database systems that enables database integration and development of self-managing functionality with low overhead by relying on separation of concerns. By keeping the components of the framework reusable and exchangeable, experiments are simplified, which promotes further research in that area. Moreover, to optimize multiple mutually dependent features, e.g., index selection and compression configurations, we propose a linear programming (LP) based algorithm to derive an efficient tuning order automatically. Afterwards, we demonstrate the applicability and scalability of our approach with reproducible examples.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10619-020-07288-w</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-8782 |
ispartof | Distributed and parallel databases : an international journal, 2020-12, Vol.38 (4), p.795-817 |
issn | 0926-8782 1573-7578 |
language | eng |
recordid | cdi_proquest_journals_2450272379 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Computer Science Configuration management Data Structures Database Management Information Systems Applications (incl.Internet) Linear programming Memory Structures Operating Systems Reusable components Special Issue on Self-Managing and Hardware-Optimized Database Systems |
title | Self-driving database systems: a conceptual approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T02%3A57%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-driving%20database%20systems:%20a%20conceptual%20approach&rft.jtitle=Distributed%20and%20parallel%20databases%20:%20an%20international%20journal&rft.au=Kossmann,%20Jan&rft.date=2020-12-01&rft.volume=38&rft.issue=4&rft.spage=795&rft.epage=817&rft.pages=795-817&rft.issn=0926-8782&rft.eissn=1573-7578&rft_id=info:doi/10.1007/s10619-020-07288-w&rft_dat=%3Cproquest_cross%3E2450272379%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450272379&rft_id=info:pmid/&rfr_iscdi=true |