Paired-Domination Problem on Distance-Hereditary Graphs

A paired-dominating set of a graph G is a dominating set S of G such that the subgraph of G induced by S has a perfect matching. Haynes and Slater (Networks 32(3):199–206, 1998) introduced the concept of paired-domination and showed that the problem of determining minimum paired-dominating sets is N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithmica 2020-10, Vol.82 (10), p.2809-2840
Hauptverfasser: Lin, Ching-Chi, Ku, Keng-Chu, Hsu, Chan-Hung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2840
container_issue 10
container_start_page 2809
container_title Algorithmica
container_volume 82
creator Lin, Ching-Chi
Ku, Keng-Chu
Hsu, Chan-Hung
description A paired-dominating set of a graph G is a dominating set S of G such that the subgraph of G induced by S has a perfect matching. Haynes and Slater (Networks 32(3):199–206, 1998) introduced the concept of paired-domination and showed that the problem of determining minimum paired-dominating sets is NP-complete on general graphs. Ever since then many algorithmic results are studied on some important classes of graphs. In this paper, we extend the results by providing an O ( n 2 ) -time algorithm on distance-hereditary graphs.
doi_str_mv 10.1007/s00453-020-00705-7
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2450262195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450262195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e53d2191e1ad06999a1762ee32949125b997a88a4383899bb5135600b5109f8d3</originalsourceid><addsrcrecordid>eNqNkMFKAzEQhoMoWKsv4KngUaIzyWazOUqrrSDYg55DdjerW9pNTbaIb-_UFb2Jp5nA909mPsbOEa4QQF8ngExJDgI4PUFxfcBGmEnBQWV4yEaAuuBZjvqYnaS0AkChTT5ieuna6Gs-C5u2c30buskyhnLtNxNqZ23qXVd5vvAEtb2LH5N5dNvXdMqOGrdO_uy7jtnz3e3TdMEfHuf305sHXkk0PfdK1gINenQ15MYYhzoX3kthMoNClcZoVxQuk4UsjClLhVLlAFTBNEUtx-ximLuN4W3nU29XYRc7-tKKTIHIaboiSgxUFUNK0Td2G9sNbWsR7F6QHQRZEmS_BFlNocsh9O7L0KSq9XTpTxAAlChQCEEdINHF_-kpqdq7nIZd11NUDtFEePfi4-8Nf6z3Cbuqhk0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450262195</pqid></control><display><type>article</type><title>Paired-Domination Problem on Distance-Hereditary Graphs</title><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Lin, Ching-Chi ; Ku, Keng-Chu ; Hsu, Chan-Hung</creator><creatorcontrib>Lin, Ching-Chi ; Ku, Keng-Chu ; Hsu, Chan-Hung</creatorcontrib><description>A paired-dominating set of a graph G is a dominating set S of G such that the subgraph of G induced by S has a perfect matching. Haynes and Slater (Networks 32(3):199–206, 1998) introduced the concept of paired-domination and showed that the problem of determining minimum paired-dominating sets is NP-complete on general graphs. Ever since then many algorithmic results are studied on some important classes of graphs. In this paper, we extend the results by providing an O ( n 2 ) -time algorithm on distance-hereditary graphs.</description><identifier>ISSN: 0178-4617</identifier><identifier>EISSN: 1432-0541</identifier><identifier>DOI: 10.1007/s00453-020-00705-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithm Analysis and Problem Complexity ; Algorithms ; Computer Science ; Computer Science, Software Engineering ; Computer Systems Organization and Communication Networks ; Data Structures and Information Theory ; Graph theory ; Graphs ; Mathematics ; Mathematics of Computing ; Mathematics, Applied ; Physical Sciences ; Science &amp; Technology ; Technology ; Theory of Computation</subject><ispartof>Algorithmica, 2020-10, Vol.82 (10), p.2809-2840</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>8</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000528122200001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c319t-e53d2191e1ad06999a1762ee32949125b997a88a4383899bb5135600b5109f8d3</citedby><cites>FETCH-LOGICAL-c319t-e53d2191e1ad06999a1762ee32949125b997a88a4383899bb5135600b5109f8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00453-020-00705-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00453-020-00705-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,28255,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Lin, Ching-Chi</creatorcontrib><creatorcontrib>Ku, Keng-Chu</creatorcontrib><creatorcontrib>Hsu, Chan-Hung</creatorcontrib><title>Paired-Domination Problem on Distance-Hereditary Graphs</title><title>Algorithmica</title><addtitle>Algorithmica</addtitle><addtitle>ALGORITHMICA</addtitle><description>A paired-dominating set of a graph G is a dominating set S of G such that the subgraph of G induced by S has a perfect matching. Haynes and Slater (Networks 32(3):199–206, 1998) introduced the concept of paired-domination and showed that the problem of determining minimum paired-dominating sets is NP-complete on general graphs. Ever since then many algorithmic results are studied on some important classes of graphs. In this paper, we extend the results by providing an O ( n 2 ) -time algorithm on distance-hereditary graphs.</description><subject>Algorithm Analysis and Problem Complexity</subject><subject>Algorithms</subject><subject>Computer Science</subject><subject>Computer Science, Software Engineering</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Data Structures and Information Theory</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematics</subject><subject>Mathematics of Computing</subject><subject>Mathematics, Applied</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><subject>Technology</subject><subject>Theory of Computation</subject><issn>0178-4617</issn><issn>1432-0541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkMFKAzEQhoMoWKsv4KngUaIzyWazOUqrrSDYg55DdjerW9pNTbaIb-_UFb2Jp5nA909mPsbOEa4QQF8ngExJDgI4PUFxfcBGmEnBQWV4yEaAuuBZjvqYnaS0AkChTT5ieuna6Gs-C5u2c30buskyhnLtNxNqZ23qXVd5vvAEtb2LH5N5dNvXdMqOGrdO_uy7jtnz3e3TdMEfHuf305sHXkk0PfdK1gINenQ15MYYhzoX3kthMoNClcZoVxQuk4UsjClLhVLlAFTBNEUtx-ximLuN4W3nU29XYRc7-tKKTIHIaboiSgxUFUNK0Td2G9sNbWsR7F6QHQRZEmS_BFlNocsh9O7L0KSq9XTpTxAAlChQCEEdINHF_-kpqdq7nIZd11NUDtFEePfi4-8Nf6z3Cbuqhk0</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Lin, Ching-Chi</creator><creator>Ku, Keng-Chu</creator><creator>Hsu, Chan-Hung</creator><general>Springer US</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201001</creationdate><title>Paired-Domination Problem on Distance-Hereditary Graphs</title><author>Lin, Ching-Chi ; Ku, Keng-Chu ; Hsu, Chan-Hung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e53d2191e1ad06999a1762ee32949125b997a88a4383899bb5135600b5109f8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithm Analysis and Problem Complexity</topic><topic>Algorithms</topic><topic>Computer Science</topic><topic>Computer Science, Software Engineering</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Data Structures and Information Theory</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematics</topic><topic>Mathematics of Computing</topic><topic>Mathematics, Applied</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><topic>Technology</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Ching-Chi</creatorcontrib><creatorcontrib>Ku, Keng-Chu</creatorcontrib><creatorcontrib>Hsu, Chan-Hung</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>Algorithmica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Ching-Chi</au><au>Ku, Keng-Chu</au><au>Hsu, Chan-Hung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Paired-Domination Problem on Distance-Hereditary Graphs</atitle><jtitle>Algorithmica</jtitle><stitle>Algorithmica</stitle><stitle>ALGORITHMICA</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>82</volume><issue>10</issue><spage>2809</spage><epage>2840</epage><pages>2809-2840</pages><issn>0178-4617</issn><eissn>1432-0541</eissn><abstract>A paired-dominating set of a graph G is a dominating set S of G such that the subgraph of G induced by S has a perfect matching. Haynes and Slater (Networks 32(3):199–206, 1998) introduced the concept of paired-domination and showed that the problem of determining minimum paired-dominating sets is NP-complete on general graphs. Ever since then many algorithmic results are studied on some important classes of graphs. In this paper, we extend the results by providing an O ( n 2 ) -time algorithm on distance-hereditary graphs.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00453-020-00705-7</doi><tpages>32</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-4617
ispartof Algorithmica, 2020-10, Vol.82 (10), p.2809-2840
issn 0178-4617
1432-0541
language eng
recordid cdi_proquest_journals_2450262195
source SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Algorithm Analysis and Problem Complexity
Algorithms
Computer Science
Computer Science, Software Engineering
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Graph theory
Graphs
Mathematics
Mathematics of Computing
Mathematics, Applied
Physical Sciences
Science & Technology
Technology
Theory of Computation
title Paired-Domination Problem on Distance-Hereditary Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T22%3A13%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Paired-Domination%20Problem%20on%20Distance-Hereditary%20Graphs&rft.jtitle=Algorithmica&rft.au=Lin,%20Ching-Chi&rft.date=2020-10-01&rft.volume=82&rft.issue=10&rft.spage=2809&rft.epage=2840&rft.pages=2809-2840&rft.issn=0178-4617&rft.eissn=1432-0541&rft_id=info:doi/10.1007/s00453-020-00705-7&rft_dat=%3Cproquest_sprin%3E2450262195%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450262195&rft_id=info:pmid/&rfr_iscdi=true