Paired-Domination Problem on Distance-Hereditary Graphs
A paired-dominating set of a graph G is a dominating set S of G such that the subgraph of G induced by S has a perfect matching. Haynes and Slater (Networks 32(3):199–206, 1998) introduced the concept of paired-domination and showed that the problem of determining minimum paired-dominating sets is N...
Gespeichert in:
Veröffentlicht in: | Algorithmica 2020-10, Vol.82 (10), p.2809-2840 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2840 |
---|---|
container_issue | 10 |
container_start_page | 2809 |
container_title | Algorithmica |
container_volume | 82 |
creator | Lin, Ching-Chi Ku, Keng-Chu Hsu, Chan-Hung |
description | A paired-dominating set of a graph
G
is a dominating set
S
of
G
such that the subgraph of
G
induced by
S
has a perfect matching. Haynes and Slater (Networks 32(3):199–206, 1998) introduced the concept of paired-domination and showed that the problem of determining minimum paired-dominating sets is NP-complete on general graphs. Ever since then many algorithmic results are studied on some important classes of graphs. In this paper, we extend the results by providing an
O
(
n
2
)
-time algorithm on distance-hereditary graphs. |
doi_str_mv | 10.1007/s00453-020-00705-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2450262195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450262195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e53d2191e1ad06999a1762ee32949125b997a88a4383899bb5135600b5109f8d3</originalsourceid><addsrcrecordid>eNqNkMFKAzEQhoMoWKsv4KngUaIzyWazOUqrrSDYg55DdjerW9pNTbaIb-_UFb2Jp5nA909mPsbOEa4QQF8ngExJDgI4PUFxfcBGmEnBQWV4yEaAuuBZjvqYnaS0AkChTT5ieuna6Gs-C5u2c30buskyhnLtNxNqZ23qXVd5vvAEtb2LH5N5dNvXdMqOGrdO_uy7jtnz3e3TdMEfHuf305sHXkk0PfdK1gINenQ15MYYhzoX3kthMoNClcZoVxQuk4UsjClLhVLlAFTBNEUtx-ximLuN4W3nU29XYRc7-tKKTIHIaboiSgxUFUNK0Td2G9sNbWsR7F6QHQRZEmS_BFlNocsh9O7L0KSq9XTpTxAAlChQCEEdINHF_-kpqdq7nIZd11NUDtFEePfi4-8Nf6z3Cbuqhk0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450262195</pqid></control><display><type>article</type><title>Paired-Domination Problem on Distance-Hereditary Graphs</title><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Lin, Ching-Chi ; Ku, Keng-Chu ; Hsu, Chan-Hung</creator><creatorcontrib>Lin, Ching-Chi ; Ku, Keng-Chu ; Hsu, Chan-Hung</creatorcontrib><description>A paired-dominating set of a graph
G
is a dominating set
S
of
G
such that the subgraph of
G
induced by
S
has a perfect matching. Haynes and Slater (Networks 32(3):199–206, 1998) introduced the concept of paired-domination and showed that the problem of determining minimum paired-dominating sets is NP-complete on general graphs. Ever since then many algorithmic results are studied on some important classes of graphs. In this paper, we extend the results by providing an
O
(
n
2
)
-time algorithm on distance-hereditary graphs.</description><identifier>ISSN: 0178-4617</identifier><identifier>EISSN: 1432-0541</identifier><identifier>DOI: 10.1007/s00453-020-00705-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithm Analysis and Problem Complexity ; Algorithms ; Computer Science ; Computer Science, Software Engineering ; Computer Systems Organization and Communication Networks ; Data Structures and Information Theory ; Graph theory ; Graphs ; Mathematics ; Mathematics of Computing ; Mathematics, Applied ; Physical Sciences ; Science & Technology ; Technology ; Theory of Computation</subject><ispartof>Algorithmica, 2020-10, Vol.82 (10), p.2809-2840</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>8</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000528122200001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c319t-e53d2191e1ad06999a1762ee32949125b997a88a4383899bb5135600b5109f8d3</citedby><cites>FETCH-LOGICAL-c319t-e53d2191e1ad06999a1762ee32949125b997a88a4383899bb5135600b5109f8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00453-020-00705-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00453-020-00705-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,28255,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Lin, Ching-Chi</creatorcontrib><creatorcontrib>Ku, Keng-Chu</creatorcontrib><creatorcontrib>Hsu, Chan-Hung</creatorcontrib><title>Paired-Domination Problem on Distance-Hereditary Graphs</title><title>Algorithmica</title><addtitle>Algorithmica</addtitle><addtitle>ALGORITHMICA</addtitle><description>A paired-dominating set of a graph
G
is a dominating set
S
of
G
such that the subgraph of
G
induced by
S
has a perfect matching. Haynes and Slater (Networks 32(3):199–206, 1998) introduced the concept of paired-domination and showed that the problem of determining minimum paired-dominating sets is NP-complete on general graphs. Ever since then many algorithmic results are studied on some important classes of graphs. In this paper, we extend the results by providing an
O
(
n
2
)
-time algorithm on distance-hereditary graphs.</description><subject>Algorithm Analysis and Problem Complexity</subject><subject>Algorithms</subject><subject>Computer Science</subject><subject>Computer Science, Software Engineering</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Data Structures and Information Theory</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematics</subject><subject>Mathematics of Computing</subject><subject>Mathematics, Applied</subject><subject>Physical Sciences</subject><subject>Science & Technology</subject><subject>Technology</subject><subject>Theory of Computation</subject><issn>0178-4617</issn><issn>1432-0541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkMFKAzEQhoMoWKsv4KngUaIzyWazOUqrrSDYg55DdjerW9pNTbaIb-_UFb2Jp5nA909mPsbOEa4QQF8ngExJDgI4PUFxfcBGmEnBQWV4yEaAuuBZjvqYnaS0AkChTT5ieuna6Gs-C5u2c30buskyhnLtNxNqZ23qXVd5vvAEtb2LH5N5dNvXdMqOGrdO_uy7jtnz3e3TdMEfHuf305sHXkk0PfdK1gINenQ15MYYhzoX3kthMoNClcZoVxQuk4UsjClLhVLlAFTBNEUtx-ximLuN4W3nU29XYRc7-tKKTIHIaboiSgxUFUNK0Td2G9sNbWsR7F6QHQRZEmS_BFlNocsh9O7L0KSq9XTpTxAAlChQCEEdINHF_-kpqdq7nIZd11NUDtFEePfi4-8Nf6z3Cbuqhk0</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Lin, Ching-Chi</creator><creator>Ku, Keng-Chu</creator><creator>Hsu, Chan-Hung</creator><general>Springer US</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201001</creationdate><title>Paired-Domination Problem on Distance-Hereditary Graphs</title><author>Lin, Ching-Chi ; Ku, Keng-Chu ; Hsu, Chan-Hung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e53d2191e1ad06999a1762ee32949125b997a88a4383899bb5135600b5109f8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithm Analysis and Problem Complexity</topic><topic>Algorithms</topic><topic>Computer Science</topic><topic>Computer Science, Software Engineering</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Data Structures and Information Theory</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematics</topic><topic>Mathematics of Computing</topic><topic>Mathematics, Applied</topic><topic>Physical Sciences</topic><topic>Science & Technology</topic><topic>Technology</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Ching-Chi</creatorcontrib><creatorcontrib>Ku, Keng-Chu</creatorcontrib><creatorcontrib>Hsu, Chan-Hung</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>Algorithmica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Ching-Chi</au><au>Ku, Keng-Chu</au><au>Hsu, Chan-Hung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Paired-Domination Problem on Distance-Hereditary Graphs</atitle><jtitle>Algorithmica</jtitle><stitle>Algorithmica</stitle><stitle>ALGORITHMICA</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>82</volume><issue>10</issue><spage>2809</spage><epage>2840</epage><pages>2809-2840</pages><issn>0178-4617</issn><eissn>1432-0541</eissn><abstract>A paired-dominating set of a graph
G
is a dominating set
S
of
G
such that the subgraph of
G
induced by
S
has a perfect matching. Haynes and Slater (Networks 32(3):199–206, 1998) introduced the concept of paired-domination and showed that the problem of determining minimum paired-dominating sets is NP-complete on general graphs. Ever since then many algorithmic results are studied on some important classes of graphs. In this paper, we extend the results by providing an
O
(
n
2
)
-time algorithm on distance-hereditary graphs.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00453-020-00705-7</doi><tpages>32</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-4617 |
ispartof | Algorithmica, 2020-10, Vol.82 (10), p.2809-2840 |
issn | 0178-4617 1432-0541 |
language | eng |
recordid | cdi_proquest_journals_2450262195 |
source | SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Algorithm Analysis and Problem Complexity Algorithms Computer Science Computer Science, Software Engineering Computer Systems Organization and Communication Networks Data Structures and Information Theory Graph theory Graphs Mathematics Mathematics of Computing Mathematics, Applied Physical Sciences Science & Technology Technology Theory of Computation |
title | Paired-Domination Problem on Distance-Hereditary Graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T22%3A13%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Paired-Domination%20Problem%20on%20Distance-Hereditary%20Graphs&rft.jtitle=Algorithmica&rft.au=Lin,%20Ching-Chi&rft.date=2020-10-01&rft.volume=82&rft.issue=10&rft.spage=2809&rft.epage=2840&rft.pages=2809-2840&rft.issn=0178-4617&rft.eissn=1432-0541&rft_id=info:doi/10.1007/s00453-020-00705-7&rft_dat=%3Cproquest_sprin%3E2450262195%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450262195&rft_id=info:pmid/&rfr_iscdi=true |