A Polynomial-Time Algorithm to Compute Turaev–Viro Invariants TV4,q of 3-Manifolds with Bounded First Betti Number

In this article, we introduce a fixed-parameter tractable algorithm for computing the Turaev–Viro invariants TV 4 , q , using the first Betti number, i.e. the dimension of the first homology group of the manifold with Z 2 -coefficients, as parameter. This is, to our knowledge, the first parameterise...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations of computational mathematics 2020, Vol.20 (5), p.1013-1034
Hauptverfasser: Maria, Clément, Spreer, Jonathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1034
container_issue 5
container_start_page 1013
container_title Foundations of computational mathematics
container_volume 20
creator Maria, Clément
Spreer, Jonathan
description In this article, we introduce a fixed-parameter tractable algorithm for computing the Turaev–Viro invariants TV 4 , q , using the first Betti number, i.e. the dimension of the first homology group of the manifold with Z 2 -coefficients, as parameter. This is, to our knowledge, the first parameterised algorithm in computational 3-manifold topology using a topological parameter. The computation of TV 4 , q is known to be #P-hard in general; using a topological parameter provides an algorithm polynomial in the size of the input triangulation for the family of 3-manifolds with first Z 2 -homology group of bounded dimension. Our algorithm is easy to implement, and running times are comparable with running times to compute integral homology groups for standard libraries of triangulated 3-manifolds. The invariants we can compute this way are powerful: in combination with integral homology and using standard data sets, we are able to almost double the pairs of 3-manifolds we can distinguish. We hope this qualifies TV 4 , q to be added to the short list of standard properties (such as orientability, connectedness and Betti numbers) that can be computed ad hoc when first investigating an unknown triangulation.
doi_str_mv 10.1007/s10208-019-09438-8
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2450259704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450259704</sourcerecordid><originalsourceid>FETCH-LOGICAL-p157t-7f01660175813ec25336d9b760104d0c49b828938268aa2bc8be08f0b307da83</originalsourceid><addsrcrecordid>eNpFkE1OwzAQRi0EEqVwAVaW2GIYx3HsLEtFoVL5WUTdRk7jFFdJnNpOETvuwA05CYEiWM1o9Ob7pIfQOYUrCiCuPYUIJAGaEkhjJok8QCOaUE4Yk-zwbxf8GJ14vwGgPKXxCIUJfrb1W2sbo2qSmUbjSb22zoSXBgeLp7bp-qBx1juld5_vH0vjLJ63O-WMaoPH2TK-3GJbYUYeVGsqW5cevw7v-Mb2balLPDPOB3yjQzD4sW8K7U7RUaVqr89-5xhls9tsek8WT3fz6WRBOspFIKICmiRABZeU6VXEGUvKtBDDCeISVnFayEimTEaJVCoqVrLQICsoGIhSSTZGF_vYztltr33IN7Z37dCYRzGHiKcC4oFie8p3zrRr7f4pCvm33XxvNx_s5j92c8m-AORdbQE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450259704</pqid></control><display><type>article</type><title>A Polynomial-Time Algorithm to Compute Turaev–Viro Invariants TV4,q of 3-Manifolds with Bounded First Betti Number</title><source>SpringerLink Journals - AutoHoldings</source><creator>Maria, Clément ; Spreer, Jonathan</creator><creatorcontrib>Maria, Clément ; Spreer, Jonathan</creatorcontrib><description>In this article, we introduce a fixed-parameter tractable algorithm for computing the Turaev–Viro invariants TV 4 , q , using the first Betti number, i.e. the dimension of the first homology group of the manifold with Z 2 -coefficients, as parameter. This is, to our knowledge, the first parameterised algorithm in computational 3-manifold topology using a topological parameter. The computation of TV 4 , q is known to be #P-hard in general; using a topological parameter provides an algorithm polynomial in the size of the input triangulation for the family of 3-manifolds with first Z 2 -homology group of bounded dimension. Our algorithm is easy to implement, and running times are comparable with running times to compute integral homology groups for standard libraries of triangulated 3-manifolds. The invariants we can compute this way are powerful: in combination with integral homology and using standard data sets, we are able to almost double the pairs of 3-manifolds we can distinguish. We hope this qualifies TV 4 , q to be added to the short list of standard properties (such as orientability, connectedness and Betti numbers) that can be computed ad hoc when first investigating an unknown triangulation.</description><identifier>ISSN: 1615-3375</identifier><identifier>EISSN: 1615-3383</identifier><identifier>DOI: 10.1007/s10208-019-09438-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Applications of Mathematics ; Computer Science ; Economics ; Homology ; Integrals ; Invariants ; Linear and Multilinear Algebras ; Manifolds (mathematics) ; Math Applications in Computer Science ; Mathematics ; Mathematics and Statistics ; Matrix Theory ; Numerical Analysis ; Parameters ; Polynomials ; Standard data ; Topology ; Triangulation</subject><ispartof>Foundations of computational mathematics, 2020, Vol.20 (5), p.1013-1034</ispartof><rights>SFoCM 2019</rights><rights>SFoCM 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p157t-7f01660175813ec25336d9b760104d0c49b828938268aa2bc8be08f0b307da83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10208-019-09438-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10208-019-09438-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Maria, Clément</creatorcontrib><creatorcontrib>Spreer, Jonathan</creatorcontrib><title>A Polynomial-Time Algorithm to Compute Turaev–Viro Invariants TV4,q of 3-Manifolds with Bounded First Betti Number</title><title>Foundations of computational mathematics</title><addtitle>Found Comput Math</addtitle><description>In this article, we introduce a fixed-parameter tractable algorithm for computing the Turaev–Viro invariants TV 4 , q , using the first Betti number, i.e. the dimension of the first homology group of the manifold with Z 2 -coefficients, as parameter. This is, to our knowledge, the first parameterised algorithm in computational 3-manifold topology using a topological parameter. The computation of TV 4 , q is known to be #P-hard in general; using a topological parameter provides an algorithm polynomial in the size of the input triangulation for the family of 3-manifolds with first Z 2 -homology group of bounded dimension. Our algorithm is easy to implement, and running times are comparable with running times to compute integral homology groups for standard libraries of triangulated 3-manifolds. The invariants we can compute this way are powerful: in combination with integral homology and using standard data sets, we are able to almost double the pairs of 3-manifolds we can distinguish. We hope this qualifies TV 4 , q to be added to the short list of standard properties (such as orientability, connectedness and Betti numbers) that can be computed ad hoc when first investigating an unknown triangulation.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Computer Science</subject><subject>Economics</subject><subject>Homology</subject><subject>Integrals</subject><subject>Invariants</subject><subject>Linear and Multilinear Algebras</subject><subject>Manifolds (mathematics)</subject><subject>Math Applications in Computer Science</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix Theory</subject><subject>Numerical Analysis</subject><subject>Parameters</subject><subject>Polynomials</subject><subject>Standard data</subject><subject>Topology</subject><subject>Triangulation</subject><issn>1615-3375</issn><issn>1615-3383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpFkE1OwzAQRi0EEqVwAVaW2GIYx3HsLEtFoVL5WUTdRk7jFFdJnNpOETvuwA05CYEiWM1o9Ob7pIfQOYUrCiCuPYUIJAGaEkhjJok8QCOaUE4Yk-zwbxf8GJ14vwGgPKXxCIUJfrb1W2sbo2qSmUbjSb22zoSXBgeLp7bp-qBx1juld5_vH0vjLJ63O-WMaoPH2TK-3GJbYUYeVGsqW5cevw7v-Mb2balLPDPOB3yjQzD4sW8K7U7RUaVqr89-5xhls9tsek8WT3fz6WRBOspFIKICmiRABZeU6VXEGUvKtBDDCeISVnFayEimTEaJVCoqVrLQICsoGIhSSTZGF_vYztltr33IN7Z37dCYRzGHiKcC4oFie8p3zrRr7f4pCvm33XxvNx_s5j92c8m-AORdbQE</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Maria, Clément</creator><creator>Spreer, Jonathan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2020</creationdate><title>A Polynomial-Time Algorithm to Compute Turaev–Viro Invariants TV4,q of 3-Manifolds with Bounded First Betti Number</title><author>Maria, Clément ; Spreer, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p157t-7f01660175813ec25336d9b760104d0c49b828938268aa2bc8be08f0b307da83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Computer Science</topic><topic>Economics</topic><topic>Homology</topic><topic>Integrals</topic><topic>Invariants</topic><topic>Linear and Multilinear Algebras</topic><topic>Manifolds (mathematics)</topic><topic>Math Applications in Computer Science</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix Theory</topic><topic>Numerical Analysis</topic><topic>Parameters</topic><topic>Polynomials</topic><topic>Standard data</topic><topic>Topology</topic><topic>Triangulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maria, Clément</creatorcontrib><creatorcontrib>Spreer, Jonathan</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Foundations of computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maria, Clément</au><au>Spreer, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Polynomial-Time Algorithm to Compute Turaev–Viro Invariants TV4,q of 3-Manifolds with Bounded First Betti Number</atitle><jtitle>Foundations of computational mathematics</jtitle><stitle>Found Comput Math</stitle><date>2020</date><risdate>2020</risdate><volume>20</volume><issue>5</issue><spage>1013</spage><epage>1034</epage><pages>1013-1034</pages><issn>1615-3375</issn><eissn>1615-3383</eissn><abstract>In this article, we introduce a fixed-parameter tractable algorithm for computing the Turaev–Viro invariants TV 4 , q , using the first Betti number, i.e. the dimension of the first homology group of the manifold with Z 2 -coefficients, as parameter. This is, to our knowledge, the first parameterised algorithm in computational 3-manifold topology using a topological parameter. The computation of TV 4 , q is known to be #P-hard in general; using a topological parameter provides an algorithm polynomial in the size of the input triangulation for the family of 3-manifolds with first Z 2 -homology group of bounded dimension. Our algorithm is easy to implement, and running times are comparable with running times to compute integral homology groups for standard libraries of triangulated 3-manifolds. The invariants we can compute this way are powerful: in combination with integral homology and using standard data sets, we are able to almost double the pairs of 3-manifolds we can distinguish. We hope this qualifies TV 4 , q to be added to the short list of standard properties (such as orientability, connectedness and Betti numbers) that can be computed ad hoc when first investigating an unknown triangulation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10208-019-09438-8</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1615-3375
ispartof Foundations of computational mathematics, 2020, Vol.20 (5), p.1013-1034
issn 1615-3375
1615-3383
language eng
recordid cdi_proquest_journals_2450259704
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Applications of Mathematics
Computer Science
Economics
Homology
Integrals
Invariants
Linear and Multilinear Algebras
Manifolds (mathematics)
Math Applications in Computer Science
Mathematics
Mathematics and Statistics
Matrix Theory
Numerical Analysis
Parameters
Polynomials
Standard data
Topology
Triangulation
title A Polynomial-Time Algorithm to Compute Turaev–Viro Invariants TV4,q of 3-Manifolds with Bounded First Betti Number
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A55%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Polynomial-Time%20Algorithm%20to%20Compute%20Turaev%E2%80%93Viro%20Invariants%20TV4,q%20of%203-Manifolds%20with%20Bounded%20First%20Betti%20Number&rft.jtitle=Foundations%20of%20computational%20mathematics&rft.au=Maria,%20Cl%C3%A9ment&rft.date=2020&rft.volume=20&rft.issue=5&rft.spage=1013&rft.epage=1034&rft.pages=1013-1034&rft.issn=1615-3375&rft.eissn=1615-3383&rft_id=info:doi/10.1007/s10208-019-09438-8&rft_dat=%3Cproquest_sprin%3E2450259704%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450259704&rft_id=info:pmid/&rfr_iscdi=true