A Polynomial-Time Algorithm to Compute Turaev–Viro Invariants TV4,q of 3-Manifolds with Bounded First Betti Number
In this article, we introduce a fixed-parameter tractable algorithm for computing the Turaev–Viro invariants TV 4 , q , using the first Betti number, i.e. the dimension of the first homology group of the manifold with Z 2 -coefficients, as parameter. This is, to our knowledge, the first parameterise...
Gespeichert in:
Veröffentlicht in: | Foundations of computational mathematics 2020, Vol.20 (5), p.1013-1034 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1034 |
---|---|
container_issue | 5 |
container_start_page | 1013 |
container_title | Foundations of computational mathematics |
container_volume | 20 |
creator | Maria, Clément Spreer, Jonathan |
description | In this article, we introduce a fixed-parameter tractable algorithm for computing the Turaev–Viro invariants
TV
4
,
q
, using the first Betti number, i.e. the dimension of the first homology group of the manifold with
Z
2
-coefficients, as parameter. This is, to our knowledge, the first parameterised algorithm in computational 3-manifold topology using a topological parameter. The computation of
TV
4
,
q
is known to be #P-hard in general; using a topological parameter provides an algorithm polynomial in the size of the input triangulation for the family of 3-manifolds with first
Z
2
-homology group of bounded dimension. Our algorithm is easy to implement, and running times are comparable with running times to compute integral homology groups for standard libraries of triangulated 3-manifolds. The invariants we can compute this way are powerful: in combination with integral homology and using standard data sets, we are able to almost double the pairs of 3-manifolds we can distinguish. We hope this qualifies
TV
4
,
q
to be added to the short list of standard properties (such as orientability, connectedness and Betti numbers) that can be computed ad hoc when first investigating an unknown triangulation. |
doi_str_mv | 10.1007/s10208-019-09438-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2450259704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450259704</sourcerecordid><originalsourceid>FETCH-LOGICAL-p157t-7f01660175813ec25336d9b760104d0c49b828938268aa2bc8be08f0b307da83</originalsourceid><addsrcrecordid>eNpFkE1OwzAQRi0EEqVwAVaW2GIYx3HsLEtFoVL5WUTdRk7jFFdJnNpOETvuwA05CYEiWM1o9Ob7pIfQOYUrCiCuPYUIJAGaEkhjJok8QCOaUE4Yk-zwbxf8GJ14vwGgPKXxCIUJfrb1W2sbo2qSmUbjSb22zoSXBgeLp7bp-qBx1juld5_vH0vjLJ63O-WMaoPH2TK-3GJbYUYeVGsqW5cevw7v-Mb2balLPDPOB3yjQzD4sW8K7U7RUaVqr89-5xhls9tsek8WT3fz6WRBOspFIKICmiRABZeU6VXEGUvKtBDDCeISVnFayEimTEaJVCoqVrLQICsoGIhSSTZGF_vYztltr33IN7Z37dCYRzGHiKcC4oFie8p3zrRr7f4pCvm33XxvNx_s5j92c8m-AORdbQE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450259704</pqid></control><display><type>article</type><title>A Polynomial-Time Algorithm to Compute Turaev–Viro Invariants TV4,q of 3-Manifolds with Bounded First Betti Number</title><source>SpringerLink Journals - AutoHoldings</source><creator>Maria, Clément ; Spreer, Jonathan</creator><creatorcontrib>Maria, Clément ; Spreer, Jonathan</creatorcontrib><description>In this article, we introduce a fixed-parameter tractable algorithm for computing the Turaev–Viro invariants
TV
4
,
q
, using the first Betti number, i.e. the dimension of the first homology group of the manifold with
Z
2
-coefficients, as parameter. This is, to our knowledge, the first parameterised algorithm in computational 3-manifold topology using a topological parameter. The computation of
TV
4
,
q
is known to be #P-hard in general; using a topological parameter provides an algorithm polynomial in the size of the input triangulation for the family of 3-manifolds with first
Z
2
-homology group of bounded dimension. Our algorithm is easy to implement, and running times are comparable with running times to compute integral homology groups for standard libraries of triangulated 3-manifolds. The invariants we can compute this way are powerful: in combination with integral homology and using standard data sets, we are able to almost double the pairs of 3-manifolds we can distinguish. We hope this qualifies
TV
4
,
q
to be added to the short list of standard properties (such as orientability, connectedness and Betti numbers) that can be computed ad hoc when first investigating an unknown triangulation.</description><identifier>ISSN: 1615-3375</identifier><identifier>EISSN: 1615-3383</identifier><identifier>DOI: 10.1007/s10208-019-09438-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Applications of Mathematics ; Computer Science ; Economics ; Homology ; Integrals ; Invariants ; Linear and Multilinear Algebras ; Manifolds (mathematics) ; Math Applications in Computer Science ; Mathematics ; Mathematics and Statistics ; Matrix Theory ; Numerical Analysis ; Parameters ; Polynomials ; Standard data ; Topology ; Triangulation</subject><ispartof>Foundations of computational mathematics, 2020, Vol.20 (5), p.1013-1034</ispartof><rights>SFoCM 2019</rights><rights>SFoCM 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p157t-7f01660175813ec25336d9b760104d0c49b828938268aa2bc8be08f0b307da83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10208-019-09438-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10208-019-09438-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Maria, Clément</creatorcontrib><creatorcontrib>Spreer, Jonathan</creatorcontrib><title>A Polynomial-Time Algorithm to Compute Turaev–Viro Invariants TV4,q of 3-Manifolds with Bounded First Betti Number</title><title>Foundations of computational mathematics</title><addtitle>Found Comput Math</addtitle><description>In this article, we introduce a fixed-parameter tractable algorithm for computing the Turaev–Viro invariants
TV
4
,
q
, using the first Betti number, i.e. the dimension of the first homology group of the manifold with
Z
2
-coefficients, as parameter. This is, to our knowledge, the first parameterised algorithm in computational 3-manifold topology using a topological parameter. The computation of
TV
4
,
q
is known to be #P-hard in general; using a topological parameter provides an algorithm polynomial in the size of the input triangulation for the family of 3-manifolds with first
Z
2
-homology group of bounded dimension. Our algorithm is easy to implement, and running times are comparable with running times to compute integral homology groups for standard libraries of triangulated 3-manifolds. The invariants we can compute this way are powerful: in combination with integral homology and using standard data sets, we are able to almost double the pairs of 3-manifolds we can distinguish. We hope this qualifies
TV
4
,
q
to be added to the short list of standard properties (such as orientability, connectedness and Betti numbers) that can be computed ad hoc when first investigating an unknown triangulation.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Computer Science</subject><subject>Economics</subject><subject>Homology</subject><subject>Integrals</subject><subject>Invariants</subject><subject>Linear and Multilinear Algebras</subject><subject>Manifolds (mathematics)</subject><subject>Math Applications in Computer Science</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix Theory</subject><subject>Numerical Analysis</subject><subject>Parameters</subject><subject>Polynomials</subject><subject>Standard data</subject><subject>Topology</subject><subject>Triangulation</subject><issn>1615-3375</issn><issn>1615-3383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpFkE1OwzAQRi0EEqVwAVaW2GIYx3HsLEtFoVL5WUTdRk7jFFdJnNpOETvuwA05CYEiWM1o9Ob7pIfQOYUrCiCuPYUIJAGaEkhjJok8QCOaUE4Yk-zwbxf8GJ14vwGgPKXxCIUJfrb1W2sbo2qSmUbjSb22zoSXBgeLp7bp-qBx1juld5_vH0vjLJ63O-WMaoPH2TK-3GJbYUYeVGsqW5cevw7v-Mb2balLPDPOB3yjQzD4sW8K7U7RUaVqr89-5xhls9tsek8WT3fz6WRBOspFIKICmiRABZeU6VXEGUvKtBDDCeISVnFayEimTEaJVCoqVrLQICsoGIhSSTZGF_vYztltr33IN7Z37dCYRzGHiKcC4oFie8p3zrRr7f4pCvm33XxvNx_s5j92c8m-AORdbQE</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Maria, Clément</creator><creator>Spreer, Jonathan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2020</creationdate><title>A Polynomial-Time Algorithm to Compute Turaev–Viro Invariants TV4,q of 3-Manifolds with Bounded First Betti Number</title><author>Maria, Clément ; Spreer, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p157t-7f01660175813ec25336d9b760104d0c49b828938268aa2bc8be08f0b307da83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Computer Science</topic><topic>Economics</topic><topic>Homology</topic><topic>Integrals</topic><topic>Invariants</topic><topic>Linear and Multilinear Algebras</topic><topic>Manifolds (mathematics)</topic><topic>Math Applications in Computer Science</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix Theory</topic><topic>Numerical Analysis</topic><topic>Parameters</topic><topic>Polynomials</topic><topic>Standard data</topic><topic>Topology</topic><topic>Triangulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maria, Clément</creatorcontrib><creatorcontrib>Spreer, Jonathan</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Foundations of computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maria, Clément</au><au>Spreer, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Polynomial-Time Algorithm to Compute Turaev–Viro Invariants TV4,q of 3-Manifolds with Bounded First Betti Number</atitle><jtitle>Foundations of computational mathematics</jtitle><stitle>Found Comput Math</stitle><date>2020</date><risdate>2020</risdate><volume>20</volume><issue>5</issue><spage>1013</spage><epage>1034</epage><pages>1013-1034</pages><issn>1615-3375</issn><eissn>1615-3383</eissn><abstract>In this article, we introduce a fixed-parameter tractable algorithm for computing the Turaev–Viro invariants
TV
4
,
q
, using the first Betti number, i.e. the dimension of the first homology group of the manifold with
Z
2
-coefficients, as parameter. This is, to our knowledge, the first parameterised algorithm in computational 3-manifold topology using a topological parameter. The computation of
TV
4
,
q
is known to be #P-hard in general; using a topological parameter provides an algorithm polynomial in the size of the input triangulation for the family of 3-manifolds with first
Z
2
-homology group of bounded dimension. Our algorithm is easy to implement, and running times are comparable with running times to compute integral homology groups for standard libraries of triangulated 3-manifolds. The invariants we can compute this way are powerful: in combination with integral homology and using standard data sets, we are able to almost double the pairs of 3-manifolds we can distinguish. We hope this qualifies
TV
4
,
q
to be added to the short list of standard properties (such as orientability, connectedness and Betti numbers) that can be computed ad hoc when first investigating an unknown triangulation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10208-019-09438-8</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-3375 |
ispartof | Foundations of computational mathematics, 2020, Vol.20 (5), p.1013-1034 |
issn | 1615-3375 1615-3383 |
language | eng |
recordid | cdi_proquest_journals_2450259704 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Applications of Mathematics Computer Science Economics Homology Integrals Invariants Linear and Multilinear Algebras Manifolds (mathematics) Math Applications in Computer Science Mathematics Mathematics and Statistics Matrix Theory Numerical Analysis Parameters Polynomials Standard data Topology Triangulation |
title | A Polynomial-Time Algorithm to Compute Turaev–Viro Invariants TV4,q of 3-Manifolds with Bounded First Betti Number |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A55%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Polynomial-Time%20Algorithm%20to%20Compute%20Turaev%E2%80%93Viro%20Invariants%20TV4,q%20of%203-Manifolds%20with%20Bounded%20First%20Betti%20Number&rft.jtitle=Foundations%20of%20computational%20mathematics&rft.au=Maria,%20Cl%C3%A9ment&rft.date=2020&rft.volume=20&rft.issue=5&rft.spage=1013&rft.epage=1034&rft.pages=1013-1034&rft.issn=1615-3375&rft.eissn=1615-3383&rft_id=info:doi/10.1007/s10208-019-09438-8&rft_dat=%3Cproquest_sprin%3E2450259704%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450259704&rft_id=info:pmid/&rfr_iscdi=true |