Atomic Subspaces for Operators
This paper introduces the concept of atomic subspaces with respect to a bounded linear operator. Atomic subspaces generalize fusion frames and this generalization leads to the notion of K -fusion frames. Characterizations of K -fusion frames are discussed. Various properties of K -fusion frames, for...
Gespeichert in:
Veröffentlicht in: | Indian journal of pure and applied mathematics 2020-09, Vol.51 (3), p.1039-1052 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1052 |
---|---|
container_issue | 3 |
container_start_page | 1039 |
container_title | Indian journal of pure and applied mathematics |
container_volume | 51 |
creator | Bhandari, Animesh Mukherjee, Saikat |
description | This paper introduces the concept of atomic subspaces with respect to a bounded linear operator. Atomic subspaces generalize fusion frames and this generalization leads to the notion of
K
-fusion frames. Characterizations of
K
-fusion frames are discussed. Various properties of
K
-fusion frames, for example, direct sum, intersection, are studied. |
doi_str_mv | 10.1007/s13226-020-0448-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450229944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450229944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1537fdcf3755f5d0b963f289faa665c63327042a6c88e25ee26848eb88c8806f3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wIsseI5OvpNjKVqFQg_qOWTTRFpssya7h_33pqzgydMMw_O-Aw9CtwQeCIB6LIRRKjFQwMC5xuMZmoFRAisuxXndgRgshNaX6KqUPYBkYMwM3S36dNj55m1oS-d8KE1Mudl0Ibs-5XKNLqL7KuHmd87Rx_PT-_IFrzer1-VijT0jssdEMBW3PjIlRBRbaI1kkWoTnZNSeMkYVcCpk17rQEUIVGquQ6t1PYCMbI7up94up-8hlN7u05CP9aWlXAClxnBeKTJRPqdScoi2y7uDy6MlYE8a7KTBVg32pMGONUOnTKns8TPkv-b_Qz-IqV31</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450229944</pqid></control><display><type>article</type><title>Atomic Subspaces for Operators</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Bhandari, Animesh ; Mukherjee, Saikat</creator><creatorcontrib>Bhandari, Animesh ; Mukherjee, Saikat</creatorcontrib><description>This paper introduces the concept of atomic subspaces with respect to a bounded linear operator. Atomic subspaces generalize fusion frames and this generalization leads to the notion of
K
-fusion frames. Characterizations of
K
-fusion frames are discussed. Various properties of
K
-fusion frames, for example, direct sum, intersection, are studied.</description><identifier>ISSN: 0019-5588</identifier><identifier>EISSN: 0975-7465</identifier><identifier>DOI: 10.1007/s13226-020-0448-y</identifier><language>eng</language><publisher>New Delhi: Indian National Science Academy</publisher><subject>Applications of Mathematics ; Frames ; Linear operators ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Subspaces</subject><ispartof>Indian journal of pure and applied mathematics, 2020-09, Vol.51 (3), p.1039-1052</ispartof><rights>Indian National Science Academy 2020</rights><rights>Indian National Science Academy 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-1537fdcf3755f5d0b963f289faa665c63327042a6c88e25ee26848eb88c8806f3</citedby><cites>FETCH-LOGICAL-c316t-1537fdcf3755f5d0b963f289faa665c63327042a6c88e25ee26848eb88c8806f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13226-020-0448-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13226-020-0448-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bhandari, Animesh</creatorcontrib><creatorcontrib>Mukherjee, Saikat</creatorcontrib><title>Atomic Subspaces for Operators</title><title>Indian journal of pure and applied mathematics</title><addtitle>Indian J Pure Appl Math</addtitle><description>This paper introduces the concept of atomic subspaces with respect to a bounded linear operator. Atomic subspaces generalize fusion frames and this generalization leads to the notion of
K
-fusion frames. Characterizations of
K
-fusion frames are discussed. Various properties of
K
-fusion frames, for example, direct sum, intersection, are studied.</description><subject>Applications of Mathematics</subject><subject>Frames</subject><subject>Linear operators</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Subspaces</subject><issn>0019-5588</issn><issn>0975-7465</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wIsseI5OvpNjKVqFQg_qOWTTRFpssya7h_33pqzgydMMw_O-Aw9CtwQeCIB6LIRRKjFQwMC5xuMZmoFRAisuxXndgRgshNaX6KqUPYBkYMwM3S36dNj55m1oS-d8KE1Mudl0Ibs-5XKNLqL7KuHmd87Rx_PT-_IFrzer1-VijT0jssdEMBW3PjIlRBRbaI1kkWoTnZNSeMkYVcCpk17rQEUIVGquQ6t1PYCMbI7up94up-8hlN7u05CP9aWlXAClxnBeKTJRPqdScoi2y7uDy6MlYE8a7KTBVg32pMGONUOnTKns8TPkv-b_Qz-IqV31</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Bhandari, Animesh</creator><creator>Mukherjee, Saikat</creator><general>Indian National Science Academy</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200901</creationdate><title>Atomic Subspaces for Operators</title><author>Bhandari, Animesh ; Mukherjee, Saikat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1537fdcf3755f5d0b963f289faa665c63327042a6c88e25ee26848eb88c8806f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Frames</topic><topic>Linear operators</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhandari, Animesh</creatorcontrib><creatorcontrib>Mukherjee, Saikat</creatorcontrib><collection>CrossRef</collection><jtitle>Indian journal of pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhandari, Animesh</au><au>Mukherjee, Saikat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic Subspaces for Operators</atitle><jtitle>Indian journal of pure and applied mathematics</jtitle><stitle>Indian J Pure Appl Math</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>51</volume><issue>3</issue><spage>1039</spage><epage>1052</epage><pages>1039-1052</pages><issn>0019-5588</issn><eissn>0975-7465</eissn><abstract>This paper introduces the concept of atomic subspaces with respect to a bounded linear operator. Atomic subspaces generalize fusion frames and this generalization leads to the notion of
K
-fusion frames. Characterizations of
K
-fusion frames are discussed. Various properties of
K
-fusion frames, for example, direct sum, intersection, are studied.</abstract><cop>New Delhi</cop><pub>Indian National Science Academy</pub><doi>10.1007/s13226-020-0448-y</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0019-5588 |
ispartof | Indian journal of pure and applied mathematics, 2020-09, Vol.51 (3), p.1039-1052 |
issn | 0019-5588 0975-7465 |
language | eng |
recordid | cdi_proquest_journals_2450229944 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Frames Linear operators Mathematics Mathematics and Statistics Numerical Analysis Subspaces |
title | Atomic Subspaces for Operators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T19%3A35%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20Subspaces%20for%20Operators&rft.jtitle=Indian%20journal%20of%20pure%20and%20applied%20mathematics&rft.au=Bhandari,%20Animesh&rft.date=2020-09-01&rft.volume=51&rft.issue=3&rft.spage=1039&rft.epage=1052&rft.pages=1039-1052&rft.issn=0019-5588&rft.eissn=0975-7465&rft_id=info:doi/10.1007/s13226-020-0448-y&rft_dat=%3Cproquest_cross%3E2450229944%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450229944&rft_id=info:pmid/&rfr_iscdi=true |