NUMERICAL SOLUTION OF FUZZY PARABOLIC DIFFERENTIAL EQUATIONS BY A FINITE DIFFERENCE METHODS
In this study, we consider the concept of under generalized differentiability for the fuzzy parabolic differential equations. When the fuzzy derivative is considered as generalization of the H-derivative, for our case, the fuzziness is in the coefficents as well as initial and boundary conditions. W...
Gespeichert in:
Veröffentlicht in: | TWMS journal of applied and engineering mathematics 2020-01, Vol.10 (4), p.886 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 886 |
container_title | TWMS journal of applied and engineering mathematics |
container_volume | 10 |
creator | Bayrak, M.A Can, E |
description | In this study, we consider the concept of under generalized differentiability for the fuzzy parabolic differential equations. When the fuzzy derivative is considered as generalization of the H-derivative, for our case, the fuzziness is in the coefficents as well as initial and boundary conditions. We analysed and applied to numerically solve a fuzzy parabolic equation by finite difference method. The applicability of presented algorithm is illustrated by solving an examples of fuzzy partial differential equations. |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2450196040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A640594741</galeid><sourcerecordid>A640594741</sourcerecordid><originalsourceid>FETCH-LOGICAL-g250t-1a106bbd9a4cacf693f5c0e72e095177b03be4a5aed83af898e46750ca2e7f53</originalsourceid><addsrcrecordid>eNptzUtvgkAQAGDStEmN9T9s0jPNLuwDjohL3QSh5XHQHsiy7BqMSiv4_8W0aT105jCTyTczd9bEQZjaCGF2f9M_WrO-38ExPEoZdCfWR1KueCbCIAZ5GpeFSBOQRiAqN5s1eAuyYJ7GIgQLEUU840khRsjfy-AKczBfgwBEIhEF_yUhByteLNNF_mQ9GLnv9eynTq0i4kW4tOP09frR3joEDjaSCNK6bnyJlVSG-q4hCmrmaOgTxFgN3VpjSaRuPFcaz_c0poxAJR3NDHGn1vP32c9T93XW_VDtuvPpOH6sHEwg8inE8E9t5V5X7dF0w0mqQ9urKqAYEh8zjEb18o8as9GHVnVHbdpxfrNwAUUdYz8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450196040</pqid></control><display><type>article</type><title>NUMERICAL SOLUTION OF FUZZY PARABOLIC DIFFERENTIAL EQUATIONS BY A FINITE DIFFERENCE METHODS</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bayrak, M.A ; Can, E</creator><creatorcontrib>Bayrak, M.A ; Can, E</creatorcontrib><description>In this study, we consider the concept of under generalized differentiability for the fuzzy parabolic differential equations. When the fuzzy derivative is considered as generalization of the H-derivative, for our case, the fuzziness is in the coefficents as well as initial and boundary conditions. We analysed and applied to numerically solve a fuzzy parabolic equation by finite difference method. The applicability of presented algorithm is illustrated by solving an examples of fuzzy partial differential equations.</description><identifier>ISSN: 2146-1147</identifier><identifier>EISSN: 2146-1147</identifier><language>eng</language><publisher>Istanbul: Turkic World Mathematical Society</publisher><subject>Algorithms ; Boundary conditions ; Differential equations ; Finite difference method ; Mathematical analysis ; Methods ; Parabolic differential equations ; Partial differential equations</subject><ispartof>TWMS journal of applied and engineering mathematics, 2020-01, Vol.10 (4), p.886</ispartof><rights>COPYRIGHT 2020 Turkic World Mathematical Society</rights><rights>2020. This work is licensed under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782</link.rule.ids></links><search><creatorcontrib>Bayrak, M.A</creatorcontrib><creatorcontrib>Can, E</creatorcontrib><title>NUMERICAL SOLUTION OF FUZZY PARABOLIC DIFFERENTIAL EQUATIONS BY A FINITE DIFFERENCE METHODS</title><title>TWMS journal of applied and engineering mathematics</title><description>In this study, we consider the concept of under generalized differentiability for the fuzzy parabolic differential equations. When the fuzzy derivative is considered as generalization of the H-derivative, for our case, the fuzziness is in the coefficents as well as initial and boundary conditions. We analysed and applied to numerically solve a fuzzy parabolic equation by finite difference method. The applicability of presented algorithm is illustrated by solving an examples of fuzzy partial differential equations.</description><subject>Algorithms</subject><subject>Boundary conditions</subject><subject>Differential equations</subject><subject>Finite difference method</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Parabolic differential equations</subject><subject>Partial differential equations</subject><issn>2146-1147</issn><issn>2146-1147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptzUtvgkAQAGDStEmN9T9s0jPNLuwDjohL3QSh5XHQHsiy7BqMSiv4_8W0aT105jCTyTczd9bEQZjaCGF2f9M_WrO-38ExPEoZdCfWR1KueCbCIAZ5GpeFSBOQRiAqN5s1eAuyYJ7GIgQLEUU840khRsjfy-AKczBfgwBEIhEF_yUhByteLNNF_mQ9GLnv9eynTq0i4kW4tOP09frR3joEDjaSCNK6bnyJlVSG-q4hCmrmaOgTxFgN3VpjSaRuPFcaz_c0poxAJR3NDHGn1vP32c9T93XW_VDtuvPpOH6sHEwg8inE8E9t5V5X7dF0w0mqQ9urKqAYEh8zjEb18o8as9GHVnVHbdpxfrNwAUUdYz8</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Bayrak, M.A</creator><creator>Can, E</creator><general>Turkic World Mathematical Society</general><general>Elman Hasanoglu</general><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>EDSIH</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20200101</creationdate><title>NUMERICAL SOLUTION OF FUZZY PARABOLIC DIFFERENTIAL EQUATIONS BY A FINITE DIFFERENCE METHODS</title><author>Bayrak, M.A ; Can, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g250t-1a106bbd9a4cacf693f5c0e72e095177b03be4a5aed83af898e46750ca2e7f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Boundary conditions</topic><topic>Differential equations</topic><topic>Finite difference method</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Parabolic differential equations</topic><topic>Partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bayrak, M.A</creatorcontrib><creatorcontrib>Can, E</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Turkey Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>TWMS journal of applied and engineering mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bayrak, M.A</au><au>Can, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NUMERICAL SOLUTION OF FUZZY PARABOLIC DIFFERENTIAL EQUATIONS BY A FINITE DIFFERENCE METHODS</atitle><jtitle>TWMS journal of applied and engineering mathematics</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>10</volume><issue>4</issue><spage>886</spage><pages>886-</pages><issn>2146-1147</issn><eissn>2146-1147</eissn><abstract>In this study, we consider the concept of under generalized differentiability for the fuzzy parabolic differential equations. When the fuzzy derivative is considered as generalization of the H-derivative, for our case, the fuzziness is in the coefficents as well as initial and boundary conditions. We analysed and applied to numerically solve a fuzzy parabolic equation by finite difference method. The applicability of presented algorithm is illustrated by solving an examples of fuzzy partial differential equations.</abstract><cop>Istanbul</cop><pub>Turkic World Mathematical Society</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2146-1147 |
ispartof | TWMS journal of applied and engineering mathematics, 2020-01, Vol.10 (4), p.886 |
issn | 2146-1147 2146-1147 |
language | eng |
recordid | cdi_proquest_journals_2450196040 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Boundary conditions Differential equations Finite difference method Mathematical analysis Methods Parabolic differential equations Partial differential equations |
title | NUMERICAL SOLUTION OF FUZZY PARABOLIC DIFFERENTIAL EQUATIONS BY A FINITE DIFFERENCE METHODS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A18%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NUMERICAL%20SOLUTION%20OF%20FUZZY%20PARABOLIC%20DIFFERENTIAL%20EQUATIONS%20BY%20A%20FINITE%20DIFFERENCE%20METHODS&rft.jtitle=TWMS%20journal%20of%20applied%20and%20engineering%20mathematics&rft.au=Bayrak,%20M.A&rft.date=2020-01-01&rft.volume=10&rft.issue=4&rft.spage=886&rft.pages=886-&rft.issn=2146-1147&rft.eissn=2146-1147&rft_id=info:doi/&rft_dat=%3Cgale_proqu%3EA640594741%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450196040&rft_id=info:pmid/&rft_galeid=A640594741&rfr_iscdi=true |