Novel scheelite‐type [Ca0.55(Nd1‐xBix)0.3]MoO4 (0.2 ≤ x ≤ 0.95) microwave dielectric ceramics with low sintering temperature
Novel scheelite‐type [Ca0.55(Nd1‐xBix)0.3]MoO4 (0.2 ≤ x ≤ 0.95) ceramics were prepared using the solid‐state reaction method. According to the X‐ray diffraction data, a solid solution was formed in 0.2 ≤ x ≤ 0.95 and all the samples belong to pure scheelite phase with the tetragonal structure. As re...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2020-12, Vol.103 (12), p.7259-7266 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7266 |
---|---|
container_issue | 12 |
container_start_page | 7259 |
container_title | Journal of the American Ceramic Society |
container_volume | 103 |
creator | Hao, Shu‐Zhao Zhou, Di Hussain, Fayaz Su, Jin‐Zhan Liu, Wen‐Feng Wang, Da‐Wei Wang, Qiu‐Ping Qi, Ze‐Ming |
description | Novel scheelite‐type [Ca0.55(Nd1‐xBix)0.3]MoO4 (0.2 ≤ x ≤ 0.95) ceramics were prepared using the solid‐state reaction method. According to the X‐ray diffraction data, a solid solution was formed in 0.2 ≤ x ≤ 0.95 and all the samples belong to pure scheelite phase with the tetragonal structure. As revealed by Raman spectroscopy, the number of vibrational modes decreased with the increase in x value, which further indicated that Bi3+ ions occupied A‐site of scheelite structure. As the x value increased, the sintering temperature decreased from 740°C to 660°C; the permittivity increased from 12.6 to 20.3; the Qf value first decreased slightly and gradually remained stable. Based on the infrared reflectivity spectrum analysis, the calculated permittivity derived from the fitted data shared the same trend with the measured value. The [Ca0.55(Nd0.05Bi0.95)0.3]MoO4 ceramic sintered at 660 °C attained a near‐zero value temperature coefficient ~τf (−7.1 ppm/°C) and showed excellent microwave dielectric properties with a ɛr ~ 20.3 and a Qf ~ 33 860 GHz, making this system a promising candidate in the ultralow temperature cofired ceramic (ULTCC) technology. |
doi_str_mv | 10.1111/jace.17378 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2450132863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450132863</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2258-5c8fb71cbcdaf621d7c1e6036adf3a2d57683a80d70955a89c0944fd0ce5d9a63</originalsourceid><addsrcrecordid>eNotkDtOw0AQhlcIJEKg4QQr0YTCZh9ee12GKLwUkgYqhKzN7phs5MRm7bw6Sug4QgpOkqPkJDiEaf6Z-X_NSB9C55T4tK6rsdLg04hH8gA1qBDUYzEND1GDEMK8SDJyjE7KclyPNJZBA3328zlkuNQjgMxWsP34rlYF4JeOIr4Qrb6h9Wp5bZeXxOevj_kgwC3is816-_WzWS__lfixuMQTq12-UHPAxkIGunJWYw1O1UaJF7Ya4Sxf4NJOK3B2-oYrmBS1Xc0cnKKjVGUlnP1rEz3fdJ86d15vcHvfafe8gjEhPaFlOoyoHmqj0pBRE2kKIeGhMilXzIgolFxJYiISC6FkrEkcBKkhGoSJVcib6GJ_t3D5-wzKKhnnMzetXyYsEIRyJkNep-g-tbAZrJLC2Ylyq4SSZIc52WFO_jAnD-1O96_jv6R1eE0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450132863</pqid></control><display><type>article</type><title>Novel scheelite‐type [Ca0.55(Nd1‐xBix)0.3]MoO4 (0.2 ≤ x ≤ 0.95) microwave dielectric ceramics with low sintering temperature</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hao, Shu‐Zhao ; Zhou, Di ; Hussain, Fayaz ; Su, Jin‐Zhan ; Liu, Wen‐Feng ; Wang, Da‐Wei ; Wang, Qiu‐Ping ; Qi, Ze‐Ming</creator><creatorcontrib>Hao, Shu‐Zhao ; Zhou, Di ; Hussain, Fayaz ; Su, Jin‐Zhan ; Liu, Wen‐Feng ; Wang, Da‐Wei ; Wang, Qiu‐Ping ; Qi, Ze‐Ming</creatorcontrib><description>Novel scheelite‐type [Ca0.55(Nd1‐xBix)0.3]MoO4 (0.2 ≤ x ≤ 0.95) ceramics were prepared using the solid‐state reaction method. According to the X‐ray diffraction data, a solid solution was formed in 0.2 ≤ x ≤ 0.95 and all the samples belong to pure scheelite phase with the tetragonal structure. As revealed by Raman spectroscopy, the number of vibrational modes decreased with the increase in x value, which further indicated that Bi3+ ions occupied A‐site of scheelite structure. As the x value increased, the sintering temperature decreased from 740°C to 660°C; the permittivity increased from 12.6 to 20.3; the Qf value first decreased slightly and gradually remained stable. Based on the infrared reflectivity spectrum analysis, the calculated permittivity derived from the fitted data shared the same trend with the measured value. The [Ca0.55(Nd0.05Bi0.95)0.3]MoO4 ceramic sintered at 660 °C attained a near‐zero value temperature coefficient ~τf (−7.1 ppm/°C) and showed excellent microwave dielectric properties with a ɛr ~ 20.3 and a Qf ~ 33 860 GHz, making this system a promising candidate in the ultralow temperature cofired ceramic (ULTCC) technology.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.17378</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Ceramics ; Dielectric properties ; Infrared analysis ; infrared spectra ; low‐sintering ; LTCC ; Permittivity ; Raman spectra ; Raman spectroscopy ; Scheelite ; Sintering ; Solid solutions ; Spectrum analysis</subject><ispartof>Journal of the American Ceramic Society, 2020-12, Vol.103 (12), p.7259-7266</ispartof><rights>2020 The Authors. published by Wiley Periodicals LLC on behalf of American Ceramic Society (ACERS)</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7411-4658 ; 0000-0001-6957-2494</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.17378$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.17378$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Hao, Shu‐Zhao</creatorcontrib><creatorcontrib>Zhou, Di</creatorcontrib><creatorcontrib>Hussain, Fayaz</creatorcontrib><creatorcontrib>Su, Jin‐Zhan</creatorcontrib><creatorcontrib>Liu, Wen‐Feng</creatorcontrib><creatorcontrib>Wang, Da‐Wei</creatorcontrib><creatorcontrib>Wang, Qiu‐Ping</creatorcontrib><creatorcontrib>Qi, Ze‐Ming</creatorcontrib><title>Novel scheelite‐type [Ca0.55(Nd1‐xBix)0.3]MoO4 (0.2 ≤ x ≤ 0.95) microwave dielectric ceramics with low sintering temperature</title><title>Journal of the American Ceramic Society</title><description>Novel scheelite‐type [Ca0.55(Nd1‐xBix)0.3]MoO4 (0.2 ≤ x ≤ 0.95) ceramics were prepared using the solid‐state reaction method. According to the X‐ray diffraction data, a solid solution was formed in 0.2 ≤ x ≤ 0.95 and all the samples belong to pure scheelite phase with the tetragonal structure. As revealed by Raman spectroscopy, the number of vibrational modes decreased with the increase in x value, which further indicated that Bi3+ ions occupied A‐site of scheelite structure. As the x value increased, the sintering temperature decreased from 740°C to 660°C; the permittivity increased from 12.6 to 20.3; the Qf value first decreased slightly and gradually remained stable. Based on the infrared reflectivity spectrum analysis, the calculated permittivity derived from the fitted data shared the same trend with the measured value. The [Ca0.55(Nd0.05Bi0.95)0.3]MoO4 ceramic sintered at 660 °C attained a near‐zero value temperature coefficient ~τf (−7.1 ppm/°C) and showed excellent microwave dielectric properties with a ɛr ~ 20.3 and a Qf ~ 33 860 GHz, making this system a promising candidate in the ultralow temperature cofired ceramic (ULTCC) technology.</description><subject>Ceramics</subject><subject>Dielectric properties</subject><subject>Infrared analysis</subject><subject>infrared spectra</subject><subject>low‐sintering</subject><subject>LTCC</subject><subject>Permittivity</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Scheelite</subject><subject>Sintering</subject><subject>Solid solutions</subject><subject>Spectrum analysis</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNotkDtOw0AQhlcIJEKg4QQr0YTCZh9ee12GKLwUkgYqhKzN7phs5MRm7bw6Sug4QgpOkqPkJDiEaf6Z-X_NSB9C55T4tK6rsdLg04hH8gA1qBDUYzEND1GDEMK8SDJyjE7KclyPNJZBA3328zlkuNQjgMxWsP34rlYF4JeOIr4Qrb6h9Wp5bZeXxOevj_kgwC3is816-_WzWS__lfixuMQTq12-UHPAxkIGunJWYw1O1UaJF7Ya4Sxf4NJOK3B2-oYrmBS1Xc0cnKKjVGUlnP1rEz3fdJ86d15vcHvfafe8gjEhPaFlOoyoHmqj0pBRE2kKIeGhMilXzIgolFxJYiISC6FkrEkcBKkhGoSJVcib6GJ_t3D5-wzKKhnnMzetXyYsEIRyJkNep-g-tbAZrJLC2Ylyq4SSZIc52WFO_jAnD-1O96_jv6R1eE0</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Hao, Shu‐Zhao</creator><creator>Zhou, Di</creator><creator>Hussain, Fayaz</creator><creator>Su, Jin‐Zhan</creator><creator>Liu, Wen‐Feng</creator><creator>Wang, Da‐Wei</creator><creator>Wang, Qiu‐Ping</creator><creator>Qi, Ze‐Ming</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-7411-4658</orcidid><orcidid>https://orcid.org/0000-0001-6957-2494</orcidid></search><sort><creationdate>202012</creationdate><title>Novel scheelite‐type [Ca0.55(Nd1‐xBix)0.3]MoO4 (0.2 ≤ x ≤ 0.95) microwave dielectric ceramics with low sintering temperature</title><author>Hao, Shu‐Zhao ; Zhou, Di ; Hussain, Fayaz ; Su, Jin‐Zhan ; Liu, Wen‐Feng ; Wang, Da‐Wei ; Wang, Qiu‐Ping ; Qi, Ze‐Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2258-5c8fb71cbcdaf621d7c1e6036adf3a2d57683a80d70955a89c0944fd0ce5d9a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ceramics</topic><topic>Dielectric properties</topic><topic>Infrared analysis</topic><topic>infrared spectra</topic><topic>low‐sintering</topic><topic>LTCC</topic><topic>Permittivity</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Scheelite</topic><topic>Sintering</topic><topic>Solid solutions</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Shu‐Zhao</creatorcontrib><creatorcontrib>Zhou, Di</creatorcontrib><creatorcontrib>Hussain, Fayaz</creatorcontrib><creatorcontrib>Su, Jin‐Zhan</creatorcontrib><creatorcontrib>Liu, Wen‐Feng</creatorcontrib><creatorcontrib>Wang, Da‐Wei</creatorcontrib><creatorcontrib>Wang, Qiu‐Ping</creatorcontrib><creatorcontrib>Qi, Ze‐Ming</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Shu‐Zhao</au><au>Zhou, Di</au><au>Hussain, Fayaz</au><au>Su, Jin‐Zhan</au><au>Liu, Wen‐Feng</au><au>Wang, Da‐Wei</au><au>Wang, Qiu‐Ping</au><au>Qi, Ze‐Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel scheelite‐type [Ca0.55(Nd1‐xBix)0.3]MoO4 (0.2 ≤ x ≤ 0.95) microwave dielectric ceramics with low sintering temperature</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2020-12</date><risdate>2020</risdate><volume>103</volume><issue>12</issue><spage>7259</spage><epage>7266</epage><pages>7259-7266</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>Novel scheelite‐type [Ca0.55(Nd1‐xBix)0.3]MoO4 (0.2 ≤ x ≤ 0.95) ceramics were prepared using the solid‐state reaction method. According to the X‐ray diffraction data, a solid solution was formed in 0.2 ≤ x ≤ 0.95 and all the samples belong to pure scheelite phase with the tetragonal structure. As revealed by Raman spectroscopy, the number of vibrational modes decreased with the increase in x value, which further indicated that Bi3+ ions occupied A‐site of scheelite structure. As the x value increased, the sintering temperature decreased from 740°C to 660°C; the permittivity increased from 12.6 to 20.3; the Qf value first decreased slightly and gradually remained stable. Based on the infrared reflectivity spectrum analysis, the calculated permittivity derived from the fitted data shared the same trend with the measured value. The [Ca0.55(Nd0.05Bi0.95)0.3]MoO4 ceramic sintered at 660 °C attained a near‐zero value temperature coefficient ~τf (−7.1 ppm/°C) and showed excellent microwave dielectric properties with a ɛr ~ 20.3 and a Qf ~ 33 860 GHz, making this system a promising candidate in the ultralow temperature cofired ceramic (ULTCC) technology.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.17378</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7411-4658</orcidid><orcidid>https://orcid.org/0000-0001-6957-2494</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2020-12, Vol.103 (12), p.7259-7266 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_journals_2450132863 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Ceramics Dielectric properties Infrared analysis infrared spectra low‐sintering LTCC Permittivity Raman spectra Raman spectroscopy Scheelite Sintering Solid solutions Spectrum analysis |
title | Novel scheelite‐type [Ca0.55(Nd1‐xBix)0.3]MoO4 (0.2 ≤ x ≤ 0.95) microwave dielectric ceramics with low sintering temperature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T11%3A23%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20scheelite%E2%80%90type%20%5BCa0.55(Nd1%E2%80%90xBix)0.3%5DMoO4%20(0.2%C2%A0%E2%89%A4%C2%A0x%C2%A0%E2%89%A4%C2%A00.95)%20microwave%20dielectric%20ceramics%20with%20low%20sintering%20temperature&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Hao,%20Shu%E2%80%90Zhao&rft.date=2020-12&rft.volume=103&rft.issue=12&rft.spage=7259&rft.epage=7266&rft.pages=7259-7266&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.17378&rft_dat=%3Cproquest_wiley%3E2450132863%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450132863&rft_id=info:pmid/&rfr_iscdi=true |