Phase development and pore stability of yttria‐ and ytterbia‐stabilized zirconia aerogels

High‐porosity yttria‐ and ytterbia‐stabilized zirconia aerogels offer the potential of extremely low thermal conductivity materials for high‐temperature applications. Yttria‐ and ytterbia‐doped zirconia aerogels were synthesized using a sol‐gel approach over the dopant range of 0‐20 atomic percent....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2020-12, Vol.103 (12), p.6700-6711
Hauptverfasser: Hurwitz, Frances I., Rogers, Richard B., Guo, Haiquan, Garg, Anita, Olson, Nathaniel S., Phan, David, Cashman, Jessica L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6711
container_issue 12
container_start_page 6700
container_title Journal of the American Ceramic Society
container_volume 103
creator Hurwitz, Frances I.
Rogers, Richard B.
Guo, Haiquan
Garg, Anita
Olson, Nathaniel S.
Phan, David
Cashman, Jessica L.
description High‐porosity yttria‐ and ytterbia‐stabilized zirconia aerogels offer the potential of extremely low thermal conductivity materials for high‐temperature applications. Yttria‐ and ytterbia‐doped zirconia aerogels were synthesized using a sol‐gel approach over the dopant range of 0‐20 atomic percent. Surface area, pore volume, and morphology of the as‐dried aerogels and materials thermally exposed for short periods of time to temperatures up to 1200°C were characterized by nitrogen physisorption, scanning and transmission electron microscopy, and X‐ray diffraction. The aerogels as supercritically dried all were X‐ray amorphous. At a 5% dopant level, a tetragonal structure with a smaller monoclinic phase developed on thermal exposure. Mixed tetragonal and cubic phases or predominantly cubic materials were observed at higher dopant levels, depending on the dopant level, temperature and exposure time. The formation of crystalline phases was accompanied by loss of surface area and pore volume, although some mesoporous structure was maintained on short‐term exposure to 1000°C. Incorporation of the smaller Yb atom into the lattice structure resulted in smaller lattice dimensions on crystallization than was seen with Y doping and favored a more highly equiaxed structure. Aerogels synthesized with 15% Y maintained the smallest particle size without evidence of sintering at 1100°C. Largest shrinkage and loss of pore volume occurred on crystallization from the amorphous phase, with further loss of pores at temperatures above 1000°C attributable to changes in lattice parameters.
doi_str_mv 10.1111/jace.17376
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450132375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450132375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3016-2ec819d75406bec6f4c1998578158c36bf49c39af77cc08f8d01bc8efe8cbdc3</originalsourceid><addsrcrecordid>eNp9kM9Kw0AQhxdRsFYvPsGCNyF1J_92cyylVqWgh15l2WxmNSXNxt1USU8-gs_ok5g2PTuX4WO-mYEfIdfAJtDX3VppnACPeHpCRpAkEIQZpKdkxBgLAy5Cdk4uvF_3CJmIR-T15V15pAV-YmWbDdYtVXVBG-uQ-lblZVW2HbWGdm3rSvX7_XOY94QuP_DR2mFBd6XTti4VVejsG1b-kpwZVXm8OvYxWd3PV7OHYPm8eJxNl4GOGKRBiFpAVvAkZmmOOjWxhiwTCReQCB2luYkzHWXKcK41E0YUDHIt0KDQeaGjMbkZzjbOfmzRt3Jtt67uP8owThhEYcST3rodLO2s9w6NbFy5Ua6TwOQ-PblPTx7S62UY5K-ywu4fUz5NZ_Nh5w9yeHVq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450132375</pqid></control><display><type>article</type><title>Phase development and pore stability of yttria‐ and ytterbia‐stabilized zirconia aerogels</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hurwitz, Frances I. ; Rogers, Richard B. ; Guo, Haiquan ; Garg, Anita ; Olson, Nathaniel S. ; Phan, David ; Cashman, Jessica L.</creator><creatorcontrib>Hurwitz, Frances I. ; Rogers, Richard B. ; Guo, Haiquan ; Garg, Anita ; Olson, Nathaniel S. ; Phan, David ; Cashman, Jessica L.</creatorcontrib><description>High‐porosity yttria‐ and ytterbia‐stabilized zirconia aerogels offer the potential of extremely low thermal conductivity materials for high‐temperature applications. Yttria‐ and ytterbia‐doped zirconia aerogels were synthesized using a sol‐gel approach over the dopant range of 0‐20 atomic percent. Surface area, pore volume, and morphology of the as‐dried aerogels and materials thermally exposed for short periods of time to temperatures up to 1200°C were characterized by nitrogen physisorption, scanning and transmission electron microscopy, and X‐ray diffraction. The aerogels as supercritically dried all were X‐ray amorphous. At a 5% dopant level, a tetragonal structure with a smaller monoclinic phase developed on thermal exposure. Mixed tetragonal and cubic phases or predominantly cubic materials were observed at higher dopant levels, depending on the dopant level, temperature and exposure time. The formation of crystalline phases was accompanied by loss of surface area and pore volume, although some mesoporous structure was maintained on short‐term exposure to 1000°C. Incorporation of the smaller Yb atom into the lattice structure resulted in smaller lattice dimensions on crystallization than was seen with Y doping and favored a more highly equiaxed structure. Aerogels synthesized with 15% Y maintained the smallest particle size without evidence of sintering at 1100°C. Largest shrinkage and loss of pore volume occurred on crystallization from the amorphous phase, with further loss of pores at temperatures above 1000°C attributable to changes in lattice parameters.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.17376</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Aerogel/aerosol ; Aerogels ; Crystallization ; Dopants ; Equiaxed structure ; Exposure ; Lattice parameters ; Morphology ; phase transformations ; Porosity ; porous materials ; Sintering (powder metallurgy) ; Sol-gel processes ; Surface area ; Synthesis ; Thermal conductivity ; thermal treatment ; yttria stabilized ; Yttrium oxide ; zirconia ; Zirconium dioxide</subject><ispartof>Journal of the American Ceramic Society, 2020-12, Vol.103 (12), p.6700-6711</ispartof><rights>2020 American Ceramic Society (ACERS)</rights><rights>2020 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3016-2ec819d75406bec6f4c1998578158c36bf49c39af77cc08f8d01bc8efe8cbdc3</citedby><cites>FETCH-LOGICAL-c3016-2ec819d75406bec6f4c1998578158c36bf49c39af77cc08f8d01bc8efe8cbdc3</cites><orcidid>0000-0002-1590-8447 ; 0000-0003-2384-3281</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.17376$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.17376$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Hurwitz, Frances I.</creatorcontrib><creatorcontrib>Rogers, Richard B.</creatorcontrib><creatorcontrib>Guo, Haiquan</creatorcontrib><creatorcontrib>Garg, Anita</creatorcontrib><creatorcontrib>Olson, Nathaniel S.</creatorcontrib><creatorcontrib>Phan, David</creatorcontrib><creatorcontrib>Cashman, Jessica L.</creatorcontrib><title>Phase development and pore stability of yttria‐ and ytterbia‐stabilized zirconia aerogels</title><title>Journal of the American Ceramic Society</title><description>High‐porosity yttria‐ and ytterbia‐stabilized zirconia aerogels offer the potential of extremely low thermal conductivity materials for high‐temperature applications. Yttria‐ and ytterbia‐doped zirconia aerogels were synthesized using a sol‐gel approach over the dopant range of 0‐20 atomic percent. Surface area, pore volume, and morphology of the as‐dried aerogels and materials thermally exposed for short periods of time to temperatures up to 1200°C were characterized by nitrogen physisorption, scanning and transmission electron microscopy, and X‐ray diffraction. The aerogels as supercritically dried all were X‐ray amorphous. At a 5% dopant level, a tetragonal structure with a smaller monoclinic phase developed on thermal exposure. Mixed tetragonal and cubic phases or predominantly cubic materials were observed at higher dopant levels, depending on the dopant level, temperature and exposure time. The formation of crystalline phases was accompanied by loss of surface area and pore volume, although some mesoporous structure was maintained on short‐term exposure to 1000°C. Incorporation of the smaller Yb atom into the lattice structure resulted in smaller lattice dimensions on crystallization than was seen with Y doping and favored a more highly equiaxed structure. Aerogels synthesized with 15% Y maintained the smallest particle size without evidence of sintering at 1100°C. Largest shrinkage and loss of pore volume occurred on crystallization from the amorphous phase, with further loss of pores at temperatures above 1000°C attributable to changes in lattice parameters.</description><subject>Aerogel/aerosol</subject><subject>Aerogels</subject><subject>Crystallization</subject><subject>Dopants</subject><subject>Equiaxed structure</subject><subject>Exposure</subject><subject>Lattice parameters</subject><subject>Morphology</subject><subject>phase transformations</subject><subject>Porosity</subject><subject>porous materials</subject><subject>Sintering (powder metallurgy)</subject><subject>Sol-gel processes</subject><subject>Surface area</subject><subject>Synthesis</subject><subject>Thermal conductivity</subject><subject>thermal treatment</subject><subject>yttria stabilized</subject><subject>Yttrium oxide</subject><subject>zirconia</subject><subject>Zirconium dioxide</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM9Kw0AQhxdRsFYvPsGCNyF1J_92cyylVqWgh15l2WxmNSXNxt1USU8-gs_ok5g2PTuX4WO-mYEfIdfAJtDX3VppnACPeHpCRpAkEIQZpKdkxBgLAy5Cdk4uvF_3CJmIR-T15V15pAV-YmWbDdYtVXVBG-uQ-lblZVW2HbWGdm3rSvX7_XOY94QuP_DR2mFBd6XTti4VVejsG1b-kpwZVXm8OvYxWd3PV7OHYPm8eJxNl4GOGKRBiFpAVvAkZmmOOjWxhiwTCReQCB2luYkzHWXKcK41E0YUDHIt0KDQeaGjMbkZzjbOfmzRt3Jtt67uP8owThhEYcST3rodLO2s9w6NbFy5Ua6TwOQ-PblPTx7S62UY5K-ywu4fUz5NZ_Nh5w9yeHVq</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Hurwitz, Frances I.</creator><creator>Rogers, Richard B.</creator><creator>Guo, Haiquan</creator><creator>Garg, Anita</creator><creator>Olson, Nathaniel S.</creator><creator>Phan, David</creator><creator>Cashman, Jessica L.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-1590-8447</orcidid><orcidid>https://orcid.org/0000-0003-2384-3281</orcidid></search><sort><creationdate>202012</creationdate><title>Phase development and pore stability of yttria‐ and ytterbia‐stabilized zirconia aerogels</title><author>Hurwitz, Frances I. ; Rogers, Richard B. ; Guo, Haiquan ; Garg, Anita ; Olson, Nathaniel S. ; Phan, David ; Cashman, Jessica L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3016-2ec819d75406bec6f4c1998578158c36bf49c39af77cc08f8d01bc8efe8cbdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerogel/aerosol</topic><topic>Aerogels</topic><topic>Crystallization</topic><topic>Dopants</topic><topic>Equiaxed structure</topic><topic>Exposure</topic><topic>Lattice parameters</topic><topic>Morphology</topic><topic>phase transformations</topic><topic>Porosity</topic><topic>porous materials</topic><topic>Sintering (powder metallurgy)</topic><topic>Sol-gel processes</topic><topic>Surface area</topic><topic>Synthesis</topic><topic>Thermal conductivity</topic><topic>thermal treatment</topic><topic>yttria stabilized</topic><topic>Yttrium oxide</topic><topic>zirconia</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hurwitz, Frances I.</creatorcontrib><creatorcontrib>Rogers, Richard B.</creatorcontrib><creatorcontrib>Guo, Haiquan</creatorcontrib><creatorcontrib>Garg, Anita</creatorcontrib><creatorcontrib>Olson, Nathaniel S.</creatorcontrib><creatorcontrib>Phan, David</creatorcontrib><creatorcontrib>Cashman, Jessica L.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hurwitz, Frances I.</au><au>Rogers, Richard B.</au><au>Guo, Haiquan</au><au>Garg, Anita</au><au>Olson, Nathaniel S.</au><au>Phan, David</au><au>Cashman, Jessica L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase development and pore stability of yttria‐ and ytterbia‐stabilized zirconia aerogels</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2020-12</date><risdate>2020</risdate><volume>103</volume><issue>12</issue><spage>6700</spage><epage>6711</epage><pages>6700-6711</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>High‐porosity yttria‐ and ytterbia‐stabilized zirconia aerogels offer the potential of extremely low thermal conductivity materials for high‐temperature applications. Yttria‐ and ytterbia‐doped zirconia aerogels were synthesized using a sol‐gel approach over the dopant range of 0‐20 atomic percent. Surface area, pore volume, and morphology of the as‐dried aerogels and materials thermally exposed for short periods of time to temperatures up to 1200°C were characterized by nitrogen physisorption, scanning and transmission electron microscopy, and X‐ray diffraction. The aerogels as supercritically dried all were X‐ray amorphous. At a 5% dopant level, a tetragonal structure with a smaller monoclinic phase developed on thermal exposure. Mixed tetragonal and cubic phases or predominantly cubic materials were observed at higher dopant levels, depending on the dopant level, temperature and exposure time. The formation of crystalline phases was accompanied by loss of surface area and pore volume, although some mesoporous structure was maintained on short‐term exposure to 1000°C. Incorporation of the smaller Yb atom into the lattice structure resulted in smaller lattice dimensions on crystallization than was seen with Y doping and favored a more highly equiaxed structure. Aerogels synthesized with 15% Y maintained the smallest particle size without evidence of sintering at 1100°C. Largest shrinkage and loss of pore volume occurred on crystallization from the amorphous phase, with further loss of pores at temperatures above 1000°C attributable to changes in lattice parameters.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.17376</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1590-8447</orcidid><orcidid>https://orcid.org/0000-0003-2384-3281</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2020-12, Vol.103 (12), p.6700-6711
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_journals_2450132375
source Wiley Online Library Journals Frontfile Complete
subjects Aerogel/aerosol
Aerogels
Crystallization
Dopants
Equiaxed structure
Exposure
Lattice parameters
Morphology
phase transformations
Porosity
porous materials
Sintering (powder metallurgy)
Sol-gel processes
Surface area
Synthesis
Thermal conductivity
thermal treatment
yttria stabilized
Yttrium oxide
zirconia
Zirconium dioxide
title Phase development and pore stability of yttria‐ and ytterbia‐stabilized zirconia aerogels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T22%3A01%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20development%20and%20pore%20stability%20of%20yttria%E2%80%90%20and%20ytterbia%E2%80%90stabilized%20zirconia%20aerogels&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Hurwitz,%20Frances%20I.&rft.date=2020-12&rft.volume=103&rft.issue=12&rft.spage=6700&rft.epage=6711&rft.pages=6700-6711&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.17376&rft_dat=%3Cproquest_cross%3E2450132375%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450132375&rft_id=info:pmid/&rfr_iscdi=true