Dirichlet Graph Variational Autoencoder

Graph Neural Networks (GNNs) and Variational Autoencoders (VAEs) have been widely used in modeling and generating graphs with latent factors. However, there is no clear explanation of what these latent factors are and why they perform well. In this work, we present Dirichlet Graph Variational Autoen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-11
Hauptverfasser: Li, Jia, Yu, Tomasyu, Li, Jiajin, Zhang, Honglei, Zhao, Kangfei, YU, Rong, Cheng, Hong, Huang, Junzhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Li, Jia
Yu, Tomasyu
Li, Jiajin
Zhang, Honglei
Zhao, Kangfei
YU, Rong
Cheng, Hong
Huang, Junzhou
description Graph Neural Networks (GNNs) and Variational Autoencoders (VAEs) have been widely used in modeling and generating graphs with latent factors. However, there is no clear explanation of what these latent factors are and why they perform well. In this work, we present Dirichlet Graph Variational Autoencoder (DGVAE) with graph cluster memberships as latent factors. Our study connects VAEs based graph generation and balanced graph cut, and provides a new way to understand and improve the internal mechanism of VAEs based graph generation. Specifically, we first interpret the reconstruction term of DGVAE as balanced graph cut in a principled way. Furthermore, motivated by the low pass characteristics in balanced graph cut, we propose a new variant of GNN named Heatts to encode the input graph into cluster memberships. Heatts utilizes the Taylor series for fast computation of heat kernels and has better low pass characteristics than Graph Convolutional Networks (GCN). Through experiments on graph generation and graph clustering, we demonstrate the effectiveness of our proposed framework.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2450080036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450080036</sourcerecordid><originalsourceid>FETCH-proquest_journals_24500800363</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQd8ksykzOyEktUXAvSizIUAhLLMpMLMnMz0vMUXAsLclPzUvOT0kt4mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFQE3F8UYmpgYGFgYGxmbGxKkCAHY0L8E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450080036</pqid></control><display><type>article</type><title>Dirichlet Graph Variational Autoencoder</title><source>Free E- Journals</source><creator>Li, Jia ; Yu, Tomasyu ; Li, Jiajin ; Zhang, Honglei ; Zhao, Kangfei ; YU, Rong ; Cheng, Hong ; Huang, Junzhou</creator><creatorcontrib>Li, Jia ; Yu, Tomasyu ; Li, Jiajin ; Zhang, Honglei ; Zhao, Kangfei ; YU, Rong ; Cheng, Hong ; Huang, Junzhou</creatorcontrib><description>Graph Neural Networks (GNNs) and Variational Autoencoders (VAEs) have been widely used in modeling and generating graphs with latent factors. However, there is no clear explanation of what these latent factors are and why they perform well. In this work, we present Dirichlet Graph Variational Autoencoder (DGVAE) with graph cluster memberships as latent factors. Our study connects VAEs based graph generation and balanced graph cut, and provides a new way to understand and improve the internal mechanism of VAEs based graph generation. Specifically, we first interpret the reconstruction term of DGVAE as balanced graph cut in a principled way. Furthermore, motivated by the low pass characteristics in balanced graph cut, we propose a new variant of GNN named Heatts to encode the input graph into cluster memberships. Heatts utilizes the Taylor series for fast computation of heat kernels and has better low pass characteristics than Graph Convolutional Networks (GCN). Through experiments on graph generation and graph clustering, we demonstrate the effectiveness of our proposed framework.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Clustering ; Dirichlet problem ; Graph neural networks ; Taylor series</subject><ispartof>arXiv.org, 2020-11</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Li, Jia</creatorcontrib><creatorcontrib>Yu, Tomasyu</creatorcontrib><creatorcontrib>Li, Jiajin</creatorcontrib><creatorcontrib>Zhang, Honglei</creatorcontrib><creatorcontrib>Zhao, Kangfei</creatorcontrib><creatorcontrib>YU, Rong</creatorcontrib><creatorcontrib>Cheng, Hong</creatorcontrib><creatorcontrib>Huang, Junzhou</creatorcontrib><title>Dirichlet Graph Variational Autoencoder</title><title>arXiv.org</title><description>Graph Neural Networks (GNNs) and Variational Autoencoders (VAEs) have been widely used in modeling and generating graphs with latent factors. However, there is no clear explanation of what these latent factors are and why they perform well. In this work, we present Dirichlet Graph Variational Autoencoder (DGVAE) with graph cluster memberships as latent factors. Our study connects VAEs based graph generation and balanced graph cut, and provides a new way to understand and improve the internal mechanism of VAEs based graph generation. Specifically, we first interpret the reconstruction term of DGVAE as balanced graph cut in a principled way. Furthermore, motivated by the low pass characteristics in balanced graph cut, we propose a new variant of GNN named Heatts to encode the input graph into cluster memberships. Heatts utilizes the Taylor series for fast computation of heat kernels and has better low pass characteristics than Graph Convolutional Networks (GCN). Through experiments on graph generation and graph clustering, we demonstrate the effectiveness of our proposed framework.</description><subject>Clustering</subject><subject>Dirichlet problem</subject><subject>Graph neural networks</subject><subject>Taylor series</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQd8ksykzOyEktUXAvSizIUAhLLMpMLMnMz0vMUXAsLclPzUvOT0kt4mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFQE3F8UYmpgYGFgYGxmbGxKkCAHY0L8E</recordid><startdate>20201118</startdate><enddate>20201118</enddate><creator>Li, Jia</creator><creator>Yu, Tomasyu</creator><creator>Li, Jiajin</creator><creator>Zhang, Honglei</creator><creator>Zhao, Kangfei</creator><creator>YU, Rong</creator><creator>Cheng, Hong</creator><creator>Huang, Junzhou</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201118</creationdate><title>Dirichlet Graph Variational Autoencoder</title><author>Li, Jia ; Yu, Tomasyu ; Li, Jiajin ; Zhang, Honglei ; Zhao, Kangfei ; YU, Rong ; Cheng, Hong ; Huang, Junzhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24500800363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Clustering</topic><topic>Dirichlet problem</topic><topic>Graph neural networks</topic><topic>Taylor series</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Jia</creatorcontrib><creatorcontrib>Yu, Tomasyu</creatorcontrib><creatorcontrib>Li, Jiajin</creatorcontrib><creatorcontrib>Zhang, Honglei</creatorcontrib><creatorcontrib>Zhao, Kangfei</creatorcontrib><creatorcontrib>YU, Rong</creatorcontrib><creatorcontrib>Cheng, Hong</creatorcontrib><creatorcontrib>Huang, Junzhou</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jia</au><au>Yu, Tomasyu</au><au>Li, Jiajin</au><au>Zhang, Honglei</au><au>Zhao, Kangfei</au><au>YU, Rong</au><au>Cheng, Hong</au><au>Huang, Junzhou</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Dirichlet Graph Variational Autoencoder</atitle><jtitle>arXiv.org</jtitle><date>2020-11-18</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Graph Neural Networks (GNNs) and Variational Autoencoders (VAEs) have been widely used in modeling and generating graphs with latent factors. However, there is no clear explanation of what these latent factors are and why they perform well. In this work, we present Dirichlet Graph Variational Autoencoder (DGVAE) with graph cluster memberships as latent factors. Our study connects VAEs based graph generation and balanced graph cut, and provides a new way to understand and improve the internal mechanism of VAEs based graph generation. Specifically, we first interpret the reconstruction term of DGVAE as balanced graph cut in a principled way. Furthermore, motivated by the low pass characteristics in balanced graph cut, we propose a new variant of GNN named Heatts to encode the input graph into cluster memberships. Heatts utilizes the Taylor series for fast computation of heat kernels and has better low pass characteristics than Graph Convolutional Networks (GCN). Through experiments on graph generation and graph clustering, we demonstrate the effectiveness of our proposed framework.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2450080036
source Free E- Journals
subjects Clustering
Dirichlet problem
Graph neural networks
Taylor series
title Dirichlet Graph Variational Autoencoder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A15%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Dirichlet%20Graph%20Variational%20Autoencoder&rft.jtitle=arXiv.org&rft.au=Li,%20Jia&rft.date=2020-11-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2450080036%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450080036&rft_id=info:pmid/&rfr_iscdi=true