Deep traps in InGaN/GaN single quantum well structures grown with and without InGaN underlayers

The electrical properties and deep trap spectra were compared for near-UV GaN/InGaN quantum well (QW) structures grown on free-standing GaN substrates. The structures differed by the presence or absence of a thin (110 nm) InGaN layer inserted between the high temperature GaN buffer and the QW region...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2020-12, Vol.845, p.156269, Article 156269
Hauptverfasser: Polyakov, A.Y., Haller, C., Butté, R., Smirnov, N.B., Alexanyan, L.A., Kochkova, A.I., Shikoh, S.A., Shchemerov, I.V., Chernykh, A.V., Lagov, P.B., Pavlov, Yu S., Carlin, J.-F., Mosca, M., Grandjean, N., Pearton, S.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 156269
container_title Journal of alloys and compounds
container_volume 845
creator Polyakov, A.Y.
Haller, C.
Butté, R.
Smirnov, N.B.
Alexanyan, L.A.
Kochkova, A.I.
Shikoh, S.A.
Shchemerov, I.V.
Chernykh, A.V.
Lagov, P.B.
Pavlov, Yu S.
Carlin, J.-F.
Mosca, M.
Grandjean, N.
Pearton, S.J.
description The electrical properties and deep trap spectra were compared for near-UV GaN/InGaN quantum well (QW) structures grown on free-standing GaN substrates. The structures differed by the presence or absence of a thin (110 nm) InGaN layer inserted between the high temperature GaN buffer and the QW region. Capacitance-voltage profiling with monochromatic illumination showed that in the InGaN underlayer (UL), the density of deep traps with optical threshold near 1.5 eV was much higher than in the QW and higher than for structures without InGaN. Irradiation with 5 MeV electrons strongly increased the concentration of these 1.5 eV traps in the QWs, with the increase more pronounced for samples without InGaN ULs. The observations are interpreted using the earlier proposed model explaining the impact of In-containing underlayers by segregation of native defects formed during growth of GaN near the surface and trapping of these surface defects by In atoms of the InGaN UL, thus preventing them from infiltrating the InGaN QW region. Deep level transient spectroscopy (DLTS) also revealed major differences in deep trap spectra in the QWs and underlying layers of the samples with and without InGaN ULs. Specifically, the introduction of the InGaN UL stimulates changing the dominant type of deep traps. Irradiation increases the densities of these traps, with the increase being more pronounced for samples without the InGaN UL. It is argued that light emitting diodes (LEDs) with InGaN UL should demonstrate a higher radiation tolerance than LEDs without InGaN UL. [Display omitted]
doi_str_mv 10.1016/j.jallcom.2020.156269
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2449986979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838820326335</els_id><sourcerecordid>2449986979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-4926dcd5e5e49e634eb3f6ea1ef8d5acaee83d8158a49250a65da25a87d2f1933</originalsourceid><addsrcrecordid>eNqFkEFLAzEQhYMoWKs_QQh43jbZ3aTJSaRqLRS96DnEZLZm2Wa3SdbSf-_W9e5hmGF4b4b3IXRLyYwSyuf1rNZNY9rdLCf5sGM85_IMTahYFFnJuTxHEyJzlolCiEt0FWNNCKGyoBOkHgE6nILuInYer_1Kv86HwtH5bQN432uf-h0-QNPgmEJvUh8g4m1oDx4fXPrC2tvfoe3T6Me9txAafYQQr9FFpZsIN399ij6en96XL9nmbbVePmwyU4gyZaXMuTWWAYNSAi9K-CwqDppCJSzTRgOIwgrKhB6kjGjOrM6ZFgubV0OSYoruxrtdaPc9xKTqtg9-eKnyspRScLmQg4qNKhPaGANUqgtup8NRUaJOLFWt_liqE0s1shx896MPhgjfDoKKxoE3YF0Ak5Rt3T8XfgBgq4Ch</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449986979</pqid></control><display><type>article</type><title>Deep traps in InGaN/GaN single quantum well structures grown with and without InGaN underlayers</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Polyakov, A.Y. ; Haller, C. ; Butté, R. ; Smirnov, N.B. ; Alexanyan, L.A. ; Kochkova, A.I. ; Shikoh, S.A. ; Shchemerov, I.V. ; Chernykh, A.V. ; Lagov, P.B. ; Pavlov, Yu S. ; Carlin, J.-F. ; Mosca, M. ; Grandjean, N. ; Pearton, S.J.</creator><creatorcontrib>Polyakov, A.Y. ; Haller, C. ; Butté, R. ; Smirnov, N.B. ; Alexanyan, L.A. ; Kochkova, A.I. ; Shikoh, S.A. ; Shchemerov, I.V. ; Chernykh, A.V. ; Lagov, P.B. ; Pavlov, Yu S. ; Carlin, J.-F. ; Mosca, M. ; Grandjean, N. ; Pearton, S.J.</creatorcontrib><description>The electrical properties and deep trap spectra were compared for near-UV GaN/InGaN quantum well (QW) structures grown on free-standing GaN substrates. The structures differed by the presence or absence of a thin (110 nm) InGaN layer inserted between the high temperature GaN buffer and the QW region. Capacitance-voltage profiling with monochromatic illumination showed that in the InGaN underlayer (UL), the density of deep traps with optical threshold near 1.5 eV was much higher than in the QW and higher than for structures without InGaN. Irradiation with 5 MeV electrons strongly increased the concentration of these 1.5 eV traps in the QWs, with the increase more pronounced for samples without InGaN ULs. The observations are interpreted using the earlier proposed model explaining the impact of In-containing underlayers by segregation of native defects formed during growth of GaN near the surface and trapping of these surface defects by In atoms of the InGaN UL, thus preventing them from infiltrating the InGaN QW region. Deep level transient spectroscopy (DLTS) also revealed major differences in deep trap spectra in the QWs and underlying layers of the samples with and without InGaN ULs. Specifically, the introduction of the InGaN UL stimulates changing the dominant type of deep traps. Irradiation increases the densities of these traps, with the increase being more pronounced for samples without the InGaN UL. It is argued that light emitting diodes (LEDs) with InGaN UL should demonstrate a higher radiation tolerance than LEDs without InGaN UL. [Display omitted]</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2020.156269</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Deep level transient spectroscopy ; Electrical properties ; Gallium nitrides ; High temperature ; Indium gallium nitrides ; Irradiation ; Light emitting diodes ; Quantum wells ; Radiation tolerance ; Spectrum analysis ; Substrates ; Surface defects</subject><ispartof>Journal of alloys and compounds, 2020-12, Vol.845, p.156269, Article 156269</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Dec 10, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-4926dcd5e5e49e634eb3f6ea1ef8d5acaee83d8158a49250a65da25a87d2f1933</citedby><cites>FETCH-LOGICAL-c384t-4926dcd5e5e49e634eb3f6ea1ef8d5acaee83d8158a49250a65da25a87d2f1933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2020.156269$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Polyakov, A.Y.</creatorcontrib><creatorcontrib>Haller, C.</creatorcontrib><creatorcontrib>Butté, R.</creatorcontrib><creatorcontrib>Smirnov, N.B.</creatorcontrib><creatorcontrib>Alexanyan, L.A.</creatorcontrib><creatorcontrib>Kochkova, A.I.</creatorcontrib><creatorcontrib>Shikoh, S.A.</creatorcontrib><creatorcontrib>Shchemerov, I.V.</creatorcontrib><creatorcontrib>Chernykh, A.V.</creatorcontrib><creatorcontrib>Lagov, P.B.</creatorcontrib><creatorcontrib>Pavlov, Yu S.</creatorcontrib><creatorcontrib>Carlin, J.-F.</creatorcontrib><creatorcontrib>Mosca, M.</creatorcontrib><creatorcontrib>Grandjean, N.</creatorcontrib><creatorcontrib>Pearton, S.J.</creatorcontrib><title>Deep traps in InGaN/GaN single quantum well structures grown with and without InGaN underlayers</title><title>Journal of alloys and compounds</title><description>The electrical properties and deep trap spectra were compared for near-UV GaN/InGaN quantum well (QW) structures grown on free-standing GaN substrates. The structures differed by the presence or absence of a thin (110 nm) InGaN layer inserted between the high temperature GaN buffer and the QW region. Capacitance-voltage profiling with monochromatic illumination showed that in the InGaN underlayer (UL), the density of deep traps with optical threshold near 1.5 eV was much higher than in the QW and higher than for structures without InGaN. Irradiation with 5 MeV electrons strongly increased the concentration of these 1.5 eV traps in the QWs, with the increase more pronounced for samples without InGaN ULs. The observations are interpreted using the earlier proposed model explaining the impact of In-containing underlayers by segregation of native defects formed during growth of GaN near the surface and trapping of these surface defects by In atoms of the InGaN UL, thus preventing them from infiltrating the InGaN QW region. Deep level transient spectroscopy (DLTS) also revealed major differences in deep trap spectra in the QWs and underlying layers of the samples with and without InGaN ULs. Specifically, the introduction of the InGaN UL stimulates changing the dominant type of deep traps. Irradiation increases the densities of these traps, with the increase being more pronounced for samples without the InGaN UL. It is argued that light emitting diodes (LEDs) with InGaN UL should demonstrate a higher radiation tolerance than LEDs without InGaN UL. [Display omitted]</description><subject>Deep level transient spectroscopy</subject><subject>Electrical properties</subject><subject>Gallium nitrides</subject><subject>High temperature</subject><subject>Indium gallium nitrides</subject><subject>Irradiation</subject><subject>Light emitting diodes</subject><subject>Quantum wells</subject><subject>Radiation tolerance</subject><subject>Spectrum analysis</subject><subject>Substrates</subject><subject>Surface defects</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLAzEQhYMoWKs_QQh43jbZ3aTJSaRqLRS96DnEZLZm2Wa3SdbSf-_W9e5hmGF4b4b3IXRLyYwSyuf1rNZNY9rdLCf5sGM85_IMTahYFFnJuTxHEyJzlolCiEt0FWNNCKGyoBOkHgE6nILuInYer_1Kv86HwtH5bQN432uf-h0-QNPgmEJvUh8g4m1oDx4fXPrC2tvfoe3T6Me9txAafYQQr9FFpZsIN399ij6en96XL9nmbbVePmwyU4gyZaXMuTWWAYNSAi9K-CwqDppCJSzTRgOIwgrKhB6kjGjOrM6ZFgubV0OSYoruxrtdaPc9xKTqtg9-eKnyspRScLmQg4qNKhPaGANUqgtup8NRUaJOLFWt_liqE0s1shx896MPhgjfDoKKxoE3YF0Ak5Rt3T8XfgBgq4Ch</recordid><startdate>20201210</startdate><enddate>20201210</enddate><creator>Polyakov, A.Y.</creator><creator>Haller, C.</creator><creator>Butté, R.</creator><creator>Smirnov, N.B.</creator><creator>Alexanyan, L.A.</creator><creator>Kochkova, A.I.</creator><creator>Shikoh, S.A.</creator><creator>Shchemerov, I.V.</creator><creator>Chernykh, A.V.</creator><creator>Lagov, P.B.</creator><creator>Pavlov, Yu S.</creator><creator>Carlin, J.-F.</creator><creator>Mosca, M.</creator><creator>Grandjean, N.</creator><creator>Pearton, S.J.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20201210</creationdate><title>Deep traps in InGaN/GaN single quantum well structures grown with and without InGaN underlayers</title><author>Polyakov, A.Y. ; Haller, C. ; Butté, R. ; Smirnov, N.B. ; Alexanyan, L.A. ; Kochkova, A.I. ; Shikoh, S.A. ; Shchemerov, I.V. ; Chernykh, A.V. ; Lagov, P.B. ; Pavlov, Yu S. ; Carlin, J.-F. ; Mosca, M. ; Grandjean, N. ; Pearton, S.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-4926dcd5e5e49e634eb3f6ea1ef8d5acaee83d8158a49250a65da25a87d2f1933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Deep level transient spectroscopy</topic><topic>Electrical properties</topic><topic>Gallium nitrides</topic><topic>High temperature</topic><topic>Indium gallium nitrides</topic><topic>Irradiation</topic><topic>Light emitting diodes</topic><topic>Quantum wells</topic><topic>Radiation tolerance</topic><topic>Spectrum analysis</topic><topic>Substrates</topic><topic>Surface defects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polyakov, A.Y.</creatorcontrib><creatorcontrib>Haller, C.</creatorcontrib><creatorcontrib>Butté, R.</creatorcontrib><creatorcontrib>Smirnov, N.B.</creatorcontrib><creatorcontrib>Alexanyan, L.A.</creatorcontrib><creatorcontrib>Kochkova, A.I.</creatorcontrib><creatorcontrib>Shikoh, S.A.</creatorcontrib><creatorcontrib>Shchemerov, I.V.</creatorcontrib><creatorcontrib>Chernykh, A.V.</creatorcontrib><creatorcontrib>Lagov, P.B.</creatorcontrib><creatorcontrib>Pavlov, Yu S.</creatorcontrib><creatorcontrib>Carlin, J.-F.</creatorcontrib><creatorcontrib>Mosca, M.</creatorcontrib><creatorcontrib>Grandjean, N.</creatorcontrib><creatorcontrib>Pearton, S.J.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polyakov, A.Y.</au><au>Haller, C.</au><au>Butté, R.</au><au>Smirnov, N.B.</au><au>Alexanyan, L.A.</au><au>Kochkova, A.I.</au><au>Shikoh, S.A.</au><au>Shchemerov, I.V.</au><au>Chernykh, A.V.</au><au>Lagov, P.B.</au><au>Pavlov, Yu S.</au><au>Carlin, J.-F.</au><au>Mosca, M.</au><au>Grandjean, N.</au><au>Pearton, S.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep traps in InGaN/GaN single quantum well structures grown with and without InGaN underlayers</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2020-12-10</date><risdate>2020</risdate><volume>845</volume><spage>156269</spage><pages>156269-</pages><artnum>156269</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>The electrical properties and deep trap spectra were compared for near-UV GaN/InGaN quantum well (QW) structures grown on free-standing GaN substrates. The structures differed by the presence or absence of a thin (110 nm) InGaN layer inserted between the high temperature GaN buffer and the QW region. Capacitance-voltage profiling with monochromatic illumination showed that in the InGaN underlayer (UL), the density of deep traps with optical threshold near 1.5 eV was much higher than in the QW and higher than for structures without InGaN. Irradiation with 5 MeV electrons strongly increased the concentration of these 1.5 eV traps in the QWs, with the increase more pronounced for samples without InGaN ULs. The observations are interpreted using the earlier proposed model explaining the impact of In-containing underlayers by segregation of native defects formed during growth of GaN near the surface and trapping of these surface defects by In atoms of the InGaN UL, thus preventing them from infiltrating the InGaN QW region. Deep level transient spectroscopy (DLTS) also revealed major differences in deep trap spectra in the QWs and underlying layers of the samples with and without InGaN ULs. Specifically, the introduction of the InGaN UL stimulates changing the dominant type of deep traps. Irradiation increases the densities of these traps, with the increase being more pronounced for samples without the InGaN UL. It is argued that light emitting diodes (LEDs) with InGaN UL should demonstrate a higher radiation tolerance than LEDs without InGaN UL. [Display omitted]</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2020.156269</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2020-12, Vol.845, p.156269, Article 156269
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2449986979
source ScienceDirect Journals (5 years ago - present)
subjects Deep level transient spectroscopy
Electrical properties
Gallium nitrides
High temperature
Indium gallium nitrides
Irradiation
Light emitting diodes
Quantum wells
Radiation tolerance
Spectrum analysis
Substrates
Surface defects
title Deep traps in InGaN/GaN single quantum well structures grown with and without InGaN underlayers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A50%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20traps%20in%20InGaN/GaN%20single%20quantum%20well%20structures%20grown%20with%20and%20without%20InGaN%20underlayers&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Polyakov,%20A.Y.&rft.date=2020-12-10&rft.volume=845&rft.spage=156269&rft.pages=156269-&rft.artnum=156269&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2020.156269&rft_dat=%3Cproquest_cross%3E2449986979%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449986979&rft_id=info:pmid/&rft_els_id=S0925838820326335&rfr_iscdi=true