An adaptive dimension level adjustment framework for differential evolution

Differential evolution (DE) has been recognized as one of the most popular evolutionary algorithms. There are numerous DE variants adopting multi-operators based cooperation strategy to improve their performance, but almost all of the adopted cooperation strategies are essentially implemented at the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems 2020-10, Vol.206, p.106388, Article 106388
Hauptverfasser: Deng, Li-Bao, Li, Chun-Lei, Sun, Gao-Ji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106388
container_title Knowledge-based systems
container_volume 206
creator Deng, Li-Bao
Li, Chun-Lei
Sun, Gao-Ji
description Differential evolution (DE) has been recognized as one of the most popular evolutionary algorithms. There are numerous DE variants adopting multi-operators based cooperation strategy to improve their performance, but almost all of the adopted cooperation strategies are essentially implemented at the individual level or population level, and the implementation at the dimension level are scarce. In this paper, an adaptive dimension level adjustment (ADLA) framework is designed to relieve the premature convergence or stagnation problem faced by DE algorithm, which can be easily combined with diverse DE variants. When the current optimal individual cannot get improved for a given uninterrupted iterations, ADLA framework will be triggered to select some individuals at random according to specific rule and reinitialize portion of their dimensions from a dynamic search space that adjusted by a population level macroparameter and one individual level microparameter. Moreover, ADLA framework contains two reinitialization operators with different search characteristics, and the coordination between them is executed at the dimension level, which has potential advantages in balancing the global exploration ability and local exploitation ability. Extensive comparison experiments are carried out based on IEEE CEC 2014 test platform, two basic DE algorithms and six outstanding DE variants. The experimental results demonstrate that ADLA framework can memorably enhance the performance of every DE algorithm used for comparison.
doi_str_mv 10.1016/j.knosys.2020.106388
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2449985670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705120305268</els_id><sourcerecordid>2449985670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-c8560aedefeda36f97b50e848634fb74f4e1b381b8d4ce88783abfd8c5aef5213</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-Aw8Fz12TJm3Ti7AsuooLXvQc0mQC6XabNUkr--_NUs-eBt6894b5ELoneEUwqR671X5w4RRWBS7OUkU5v0ALwusirxluLtECNyXOa1ySa3QTQocxLgrCF-h9PWRSy2O0E2TaHmAI1g1ZDxP0adGNISYtZsbLA_w4v8-M88loDPikW9lnMLl-jCl1i66M7APc_c0l-np5_ty85ruP7dtmvcsVpSzmipcVlqDBgJa0Mk3dlhg44xVlpq2ZYUBayknLNVPAec2pbI3mqpRgyoLQJXqYe4_efY8Qoujc6Id0UhSMNU3qr3FysdmlvAvBgxFHbw_SnwTB4oxNdGLGJs7YxIwtxZ7mGKQPJgteBGVhUKCtBxWFdvb_gl9lAHnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449985670</pqid></control><display><type>article</type><title>An adaptive dimension level adjustment framework for differential evolution</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Deng, Li-Bao ; Li, Chun-Lei ; Sun, Gao-Ji</creator><creatorcontrib>Deng, Li-Bao ; Li, Chun-Lei ; Sun, Gao-Ji</creatorcontrib><description>Differential evolution (DE) has been recognized as one of the most popular evolutionary algorithms. There are numerous DE variants adopting multi-operators based cooperation strategy to improve their performance, but almost all of the adopted cooperation strategies are essentially implemented at the individual level or population level, and the implementation at the dimension level are scarce. In this paper, an adaptive dimension level adjustment (ADLA) framework is designed to relieve the premature convergence or stagnation problem faced by DE algorithm, which can be easily combined with diverse DE variants. When the current optimal individual cannot get improved for a given uninterrupted iterations, ADLA framework will be triggered to select some individuals at random according to specific rule and reinitialize portion of their dimensions from a dynamic search space that adjusted by a population level macroparameter and one individual level microparameter. Moreover, ADLA framework contains two reinitialization operators with different search characteristics, and the coordination between them is executed at the dimension level, which has potential advantages in balancing the global exploration ability and local exploitation ability. Extensive comparison experiments are carried out based on IEEE CEC 2014 test platform, two basic DE algorithms and six outstanding DE variants. The experimental results demonstrate that ADLA framework can memorably enhance the performance of every DE algorithm used for comparison.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2020.106388</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Cooperation ; Differential evolution ; Dimension level adjustment ; Evolutionary algorithms ; Evolutionary computation ; Global optimization ; Improvement framework ; Operators ; Reinitialization framework</subject><ispartof>Knowledge-based systems, 2020-10, Vol.206, p.106388, Article 106388</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Oct 28, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-c8560aedefeda36f97b50e848634fb74f4e1b381b8d4ce88783abfd8c5aef5213</citedby><cites>FETCH-LOGICAL-c334t-c8560aedefeda36f97b50e848634fb74f4e1b381b8d4ce88783abfd8c5aef5213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.knosys.2020.106388$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Deng, Li-Bao</creatorcontrib><creatorcontrib>Li, Chun-Lei</creatorcontrib><creatorcontrib>Sun, Gao-Ji</creatorcontrib><title>An adaptive dimension level adjustment framework for differential evolution</title><title>Knowledge-based systems</title><description>Differential evolution (DE) has been recognized as one of the most popular evolutionary algorithms. There are numerous DE variants adopting multi-operators based cooperation strategy to improve their performance, but almost all of the adopted cooperation strategies are essentially implemented at the individual level or population level, and the implementation at the dimension level are scarce. In this paper, an adaptive dimension level adjustment (ADLA) framework is designed to relieve the premature convergence or stagnation problem faced by DE algorithm, which can be easily combined with diverse DE variants. When the current optimal individual cannot get improved for a given uninterrupted iterations, ADLA framework will be triggered to select some individuals at random according to specific rule and reinitialize portion of their dimensions from a dynamic search space that adjusted by a population level macroparameter and one individual level microparameter. Moreover, ADLA framework contains two reinitialization operators with different search characteristics, and the coordination between them is executed at the dimension level, which has potential advantages in balancing the global exploration ability and local exploitation ability. Extensive comparison experiments are carried out based on IEEE CEC 2014 test platform, two basic DE algorithms and six outstanding DE variants. The experimental results demonstrate that ADLA framework can memorably enhance the performance of every DE algorithm used for comparison.</description><subject>Algorithms</subject><subject>Cooperation</subject><subject>Differential evolution</subject><subject>Dimension level adjustment</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Global optimization</subject><subject>Improvement framework</subject><subject>Operators</subject><subject>Reinitialization framework</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouK7-Aw8Fz12TJm3Ti7AsuooLXvQc0mQC6XabNUkr--_NUs-eBt6894b5ELoneEUwqR671X5w4RRWBS7OUkU5v0ALwusirxluLtECNyXOa1ySa3QTQocxLgrCF-h9PWRSy2O0E2TaHmAI1g1ZDxP0adGNISYtZsbLA_w4v8-M88loDPikW9lnMLl-jCl1i66M7APc_c0l-np5_ty85ruP7dtmvcsVpSzmipcVlqDBgJa0Mk3dlhg44xVlpq2ZYUBayknLNVPAec2pbI3mqpRgyoLQJXqYe4_efY8Qoujc6Id0UhSMNU3qr3FysdmlvAvBgxFHbw_SnwTB4oxNdGLGJs7YxIwtxZ7mGKQPJgteBGVhUKCtBxWFdvb_gl9lAHnw</recordid><startdate>20201028</startdate><enddate>20201028</enddate><creator>Deng, Li-Bao</creator><creator>Li, Chun-Lei</creator><creator>Sun, Gao-Ji</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20201028</creationdate><title>An adaptive dimension level adjustment framework for differential evolution</title><author>Deng, Li-Bao ; Li, Chun-Lei ; Sun, Gao-Ji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-c8560aedefeda36f97b50e848634fb74f4e1b381b8d4ce88783abfd8c5aef5213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Cooperation</topic><topic>Differential evolution</topic><topic>Dimension level adjustment</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Global optimization</topic><topic>Improvement framework</topic><topic>Operators</topic><topic>Reinitialization framework</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Li-Bao</creatorcontrib><creatorcontrib>Li, Chun-Lei</creatorcontrib><creatorcontrib>Sun, Gao-Ji</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Li-Bao</au><au>Li, Chun-Lei</au><au>Sun, Gao-Ji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An adaptive dimension level adjustment framework for differential evolution</atitle><jtitle>Knowledge-based systems</jtitle><date>2020-10-28</date><risdate>2020</risdate><volume>206</volume><spage>106388</spage><pages>106388-</pages><artnum>106388</artnum><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>Differential evolution (DE) has been recognized as one of the most popular evolutionary algorithms. There are numerous DE variants adopting multi-operators based cooperation strategy to improve their performance, but almost all of the adopted cooperation strategies are essentially implemented at the individual level or population level, and the implementation at the dimension level are scarce. In this paper, an adaptive dimension level adjustment (ADLA) framework is designed to relieve the premature convergence or stagnation problem faced by DE algorithm, which can be easily combined with diverse DE variants. When the current optimal individual cannot get improved for a given uninterrupted iterations, ADLA framework will be triggered to select some individuals at random according to specific rule and reinitialize portion of their dimensions from a dynamic search space that adjusted by a population level macroparameter and one individual level microparameter. Moreover, ADLA framework contains two reinitialization operators with different search characteristics, and the coordination between them is executed at the dimension level, which has potential advantages in balancing the global exploration ability and local exploitation ability. Extensive comparison experiments are carried out based on IEEE CEC 2014 test platform, two basic DE algorithms and six outstanding DE variants. The experimental results demonstrate that ADLA framework can memorably enhance the performance of every DE algorithm used for comparison.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2020.106388</doi></addata></record>
fulltext fulltext
identifier ISSN: 0950-7051
ispartof Knowledge-based systems, 2020-10, Vol.206, p.106388, Article 106388
issn 0950-7051
1872-7409
language eng
recordid cdi_proquest_journals_2449985670
source Elsevier ScienceDirect Journals Complete
subjects Algorithms
Cooperation
Differential evolution
Dimension level adjustment
Evolutionary algorithms
Evolutionary computation
Global optimization
Improvement framework
Operators
Reinitialization framework
title An adaptive dimension level adjustment framework for differential evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A13%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20adaptive%20dimension%20level%20adjustment%20framework%20for%20differential%20evolution&rft.jtitle=Knowledge-based%20systems&rft.au=Deng,%20Li-Bao&rft.date=2020-10-28&rft.volume=206&rft.spage=106388&rft.pages=106388-&rft.artnum=106388&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2020.106388&rft_dat=%3Cproquest_cross%3E2449985670%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449985670&rft_id=info:pmid/&rft_els_id=S0950705120305268&rfr_iscdi=true