Real-Time Classification of Rubber Wood Boards Using an SSR-Based CNN

The classification of wood types plays an important role in many fields, especially in construction industry and furniture manufacturing. In order to manufacture rubber wood furniture with highly uniform color and texture, wood boards of different colors and textures should be classified elaborately...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2020-11, Vol.69 (11), p.8725-8734
Hauptverfasser: Liu, Shihui, Jiang, Wenbo, Wu, Lehui, Wen, He, Liu, Min, Wang, Yaonan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8734
container_issue 11
container_start_page 8725
container_title IEEE transactions on instrumentation and measurement
container_volume 69
creator Liu, Shihui
Jiang, Wenbo
Wu, Lehui
Wen, He
Liu, Min
Wang, Yaonan
description The classification of wood types plays an important role in many fields, especially in construction industry and furniture manufacturing. In order to manufacture rubber wood furniture with highly uniform color and texture, wood boards of different colors and textures should be classified elaborately. Many traditional methods have been applied in wood classification relying on extracting features using handcrafted descriptors designed by experienced experts, but it is not easy to construct robust features in various conditions. In this article, we present a split-shuffle-residual (SSR)-based CNN that can learn features automatically from wood images for real-time classification of rubber wood boards. Specifically, we introduce an SSR module that combines channel split and shuffle operations with residual structure to reduce the computation cost while maintaining high classification accuracy. In each module, the input is split into two low-dimensional branches, and the channel shuffle operation is used to enable the information communication between the input and the two separated branches, which is regarded as the feature reuse that enlarges network capacity without increasing complexity. The comprehensive experiments demonstrate that our algorithm outperforms other traditional classification methods and the state-of-the-art deep learning classification networks, yielding an accuracy of 94.86%. Furthermore, the analysis of running time indicates that the SSR-based CNN can be employed for wood classification in real time, which takes only 26.55 ms to handle a single image.
doi_str_mv 10.1109/TIM.2020.3001370
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2449964885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9151201</ieee_id><sourcerecordid>2449964885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-d832e46869668a16ce5cdc0ef26f50eea40439e8d20a0722eeff75e2774276c3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89ZJNh-bo12qFmqFdsVjSHcnsqXd1KQ9-O_d0uJpYHjed4aHkHsGI8bAPFXT9xEHDqMcgOUaLsiASakzoxS_JIN-WWRGSHVNblJaA4BWQg_IZIFuk1XtFmm5cSm1vq3dvg0dDZ4uDqsVRvoVQkPHwcUm0c_Udt_UdXS5XGRjl7Ch5Xx-S6682yS8O88hqV4mVfmWzT5ep-XzLKtzqfdZU-QchSpU_1ThmKpR1k0N6LnyEhCdAJEbLBoODjTniN5riVxrwbWq8yF5PNXuYvg5YNrbdTjErr9ouRDGKFEUsqfgRNUxpBTR211sty7-Wgb26Mr2ruzRlT276iMPp0iLiP-4YZLxHvgD1Ppifg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449964885</pqid></control><display><type>article</type><title>Real-Time Classification of Rubber Wood Boards Using an SSR-Based CNN</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Shihui ; Jiang, Wenbo ; Wu, Lehui ; Wen, He ; Liu, Min ; Wang, Yaonan</creator><creatorcontrib>Liu, Shihui ; Jiang, Wenbo ; Wu, Lehui ; Wen, He ; Liu, Min ; Wang, Yaonan</creatorcontrib><description>The classification of wood types plays an important role in many fields, especially in construction industry and furniture manufacturing. In order to manufacture rubber wood furniture with highly uniform color and texture, wood boards of different colors and textures should be classified elaborately. Many traditional methods have been applied in wood classification relying on extracting features using handcrafted descriptors designed by experienced experts, but it is not easy to construct robust features in various conditions. In this article, we present a split-shuffle-residual (SSR)-based CNN that can learn features automatically from wood images for real-time classification of rubber wood boards. Specifically, we introduce an SSR module that combines channel split and shuffle operations with residual structure to reduce the computation cost while maintaining high classification accuracy. In each module, the input is split into two low-dimensional branches, and the channel shuffle operation is used to enable the information communication between the input and the two separated branches, which is regarded as the feature reuse that enlarges network capacity without increasing complexity. The comprehensive experiments demonstrate that our algorithm outperforms other traditional classification methods and the state-of-the-art deep learning classification networks, yielding an accuracy of 94.86%. Furthermore, the analysis of running time indicates that the SSR-based CNN can be employed for wood classification in real time, which takes only 26.55 ms to handle a single image.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2020.3001370</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Boards ; Cameras ; Classification ; CNN ; Construction industry ; deep learning ; Feature extraction ; Image classification ; Image color analysis ; Image resolution ; Machine learning ; Modules ; Real time ; Real-time systems ; Rubber ; rubber wood ; Run time (computers)</subject><ispartof>IEEE transactions on instrumentation and measurement, 2020-11, Vol.69 (11), p.8725-8734</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-d832e46869668a16ce5cdc0ef26f50eea40439e8d20a0722eeff75e2774276c3</citedby><cites>FETCH-LOGICAL-c357t-d832e46869668a16ce5cdc0ef26f50eea40439e8d20a0722eeff75e2774276c3</cites><orcidid>0000-0001-6406-4896 ; 0000-0001-8024-1899 ; 0000-0002-2815-4744 ; 0000-0003-0593-469X ; 0000-0002-0519-6458 ; 0000-0001-9335-1050</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9151201$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9151201$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Shihui</creatorcontrib><creatorcontrib>Jiang, Wenbo</creatorcontrib><creatorcontrib>Wu, Lehui</creatorcontrib><creatorcontrib>Wen, He</creatorcontrib><creatorcontrib>Liu, Min</creatorcontrib><creatorcontrib>Wang, Yaonan</creatorcontrib><title>Real-Time Classification of Rubber Wood Boards Using an SSR-Based CNN</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>The classification of wood types plays an important role in many fields, especially in construction industry and furniture manufacturing. In order to manufacture rubber wood furniture with highly uniform color and texture, wood boards of different colors and textures should be classified elaborately. Many traditional methods have been applied in wood classification relying on extracting features using handcrafted descriptors designed by experienced experts, but it is not easy to construct robust features in various conditions. In this article, we present a split-shuffle-residual (SSR)-based CNN that can learn features automatically from wood images for real-time classification of rubber wood boards. Specifically, we introduce an SSR module that combines channel split and shuffle operations with residual structure to reduce the computation cost while maintaining high classification accuracy. In each module, the input is split into two low-dimensional branches, and the channel shuffle operation is used to enable the information communication between the input and the two separated branches, which is regarded as the feature reuse that enlarges network capacity without increasing complexity. The comprehensive experiments demonstrate that our algorithm outperforms other traditional classification methods and the state-of-the-art deep learning classification networks, yielding an accuracy of 94.86%. Furthermore, the analysis of running time indicates that the SSR-based CNN can be employed for wood classification in real time, which takes only 26.55 ms to handle a single image.</description><subject>Algorithms</subject><subject>Boards</subject><subject>Cameras</subject><subject>Classification</subject><subject>CNN</subject><subject>Construction industry</subject><subject>deep learning</subject><subject>Feature extraction</subject><subject>Image classification</subject><subject>Image color analysis</subject><subject>Image resolution</subject><subject>Machine learning</subject><subject>Modules</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Rubber</subject><subject>rubber wood</subject><subject>Run time (computers)</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89ZJNh-bo12qFmqFdsVjSHcnsqXd1KQ9-O_d0uJpYHjed4aHkHsGI8bAPFXT9xEHDqMcgOUaLsiASakzoxS_JIN-WWRGSHVNblJaA4BWQg_IZIFuk1XtFmm5cSm1vq3dvg0dDZ4uDqsVRvoVQkPHwcUm0c_Udt_UdXS5XGRjl7Ch5Xx-S6682yS8O88hqV4mVfmWzT5ep-XzLKtzqfdZU-QchSpU_1ThmKpR1k0N6LnyEhCdAJEbLBoODjTniN5riVxrwbWq8yF5PNXuYvg5YNrbdTjErr9ouRDGKFEUsqfgRNUxpBTR211sty7-Wgb26Mr2ruzRlT276iMPp0iLiP-4YZLxHvgD1Ppifg</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Liu, Shihui</creator><creator>Jiang, Wenbo</creator><creator>Wu, Lehui</creator><creator>Wen, He</creator><creator>Liu, Min</creator><creator>Wang, Yaonan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6406-4896</orcidid><orcidid>https://orcid.org/0000-0001-8024-1899</orcidid><orcidid>https://orcid.org/0000-0002-2815-4744</orcidid><orcidid>https://orcid.org/0000-0003-0593-469X</orcidid><orcidid>https://orcid.org/0000-0002-0519-6458</orcidid><orcidid>https://orcid.org/0000-0001-9335-1050</orcidid></search><sort><creationdate>20201101</creationdate><title>Real-Time Classification of Rubber Wood Boards Using an SSR-Based CNN</title><author>Liu, Shihui ; Jiang, Wenbo ; Wu, Lehui ; Wen, He ; Liu, Min ; Wang, Yaonan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-d832e46869668a16ce5cdc0ef26f50eea40439e8d20a0722eeff75e2774276c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Boards</topic><topic>Cameras</topic><topic>Classification</topic><topic>CNN</topic><topic>Construction industry</topic><topic>deep learning</topic><topic>Feature extraction</topic><topic>Image classification</topic><topic>Image color analysis</topic><topic>Image resolution</topic><topic>Machine learning</topic><topic>Modules</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Rubber</topic><topic>rubber wood</topic><topic>Run time (computers)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Shihui</creatorcontrib><creatorcontrib>Jiang, Wenbo</creatorcontrib><creatorcontrib>Wu, Lehui</creatorcontrib><creatorcontrib>Wen, He</creatorcontrib><creatorcontrib>Liu, Min</creatorcontrib><creatorcontrib>Wang, Yaonan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Shihui</au><au>Jiang, Wenbo</au><au>Wu, Lehui</au><au>Wen, He</au><au>Liu, Min</au><au>Wang, Yaonan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Classification of Rubber Wood Boards Using an SSR-Based CNN</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>69</volume><issue>11</issue><spage>8725</spage><epage>8734</epage><pages>8725-8734</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>The classification of wood types plays an important role in many fields, especially in construction industry and furniture manufacturing. In order to manufacture rubber wood furniture with highly uniform color and texture, wood boards of different colors and textures should be classified elaborately. Many traditional methods have been applied in wood classification relying on extracting features using handcrafted descriptors designed by experienced experts, but it is not easy to construct robust features in various conditions. In this article, we present a split-shuffle-residual (SSR)-based CNN that can learn features automatically from wood images for real-time classification of rubber wood boards. Specifically, we introduce an SSR module that combines channel split and shuffle operations with residual structure to reduce the computation cost while maintaining high classification accuracy. In each module, the input is split into two low-dimensional branches, and the channel shuffle operation is used to enable the information communication between the input and the two separated branches, which is regarded as the feature reuse that enlarges network capacity without increasing complexity. The comprehensive experiments demonstrate that our algorithm outperforms other traditional classification methods and the state-of-the-art deep learning classification networks, yielding an accuracy of 94.86%. Furthermore, the analysis of running time indicates that the SSR-based CNN can be employed for wood classification in real time, which takes only 26.55 ms to handle a single image.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2020.3001370</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6406-4896</orcidid><orcidid>https://orcid.org/0000-0001-8024-1899</orcidid><orcidid>https://orcid.org/0000-0002-2815-4744</orcidid><orcidid>https://orcid.org/0000-0003-0593-469X</orcidid><orcidid>https://orcid.org/0000-0002-0519-6458</orcidid><orcidid>https://orcid.org/0000-0001-9335-1050</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2020-11, Vol.69 (11), p.8725-8734
issn 0018-9456
1557-9662
language eng
recordid cdi_proquest_journals_2449964885
source IEEE Electronic Library (IEL)
subjects Algorithms
Boards
Cameras
Classification
CNN
Construction industry
deep learning
Feature extraction
Image classification
Image color analysis
Image resolution
Machine learning
Modules
Real time
Real-time systems
Rubber
rubber wood
Run time (computers)
title Real-Time Classification of Rubber Wood Boards Using an SSR-Based CNN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A59%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Classification%20of%20Rubber%20Wood%20Boards%20Using%20an%20SSR-Based%20CNN&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Liu,%20Shihui&rft.date=2020-11-01&rft.volume=69&rft.issue=11&rft.spage=8725&rft.epage=8734&rft.pages=8725-8734&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2020.3001370&rft_dat=%3Cproquest_RIE%3E2449964885%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449964885&rft_id=info:pmid/&rft_ieee_id=9151201&rfr_iscdi=true