Background Learning Based on Target Suppression Constraint for Hyperspectral Target Detection

Hyperspectral target detection is critical in both military and civilian applications. However, it is a challenging task due to the complexity of background and the limited samples of target in hyperspectral images (HSIs). In this article, we propose a novel background learning model, called backgro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing 2020, Vol.13, p.5887-5897
Hauptverfasser: Xie, Weiying, Zhang, Xin, Li, Yunsong, Wang, Keyan, Du, Qian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5897
container_issue
container_start_page 5887
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 13
creator Xie, Weiying
Zhang, Xin
Li, Yunsong
Wang, Keyan
Du, Qian
description Hyperspectral target detection is critical in both military and civilian applications. However, it is a challenging task due to the complexity of background and the limited samples of target in hyperspectral images (HSIs). In this article, we propose a novel background learning model, called background learning based on target suppression constraint to characterize high-dimensional spectral vectors. Considering insufficient target samples, the model is trained only on the background spectral samples to accurately learn the background distribution. Then the discrepancy between the reconstructed and original HSIs are examined to spot the targets. To obtain a background training dataset, coarse detection is carried out. However, it is quite difficult to retrieve pure background data. Thus, a target suppression constraint is imposed to reduce the impact of suspected target samples on background reconstruction. Experiments on six real HSIs demonstrate that the proposed framework significantly outperforms the current state-of-the-art detection methods and yields higher detection accuracy and lower false alarm rate.
doi_str_mv 10.1109/JSTARS.2020.3024903
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2449951729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9200776</ieee_id><doaj_id>oai_doaj_org_article_b88df0dc41484d0d93a57d412ae45b63</doaj_id><sourcerecordid>2449951729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-e34f4b06e9c127a5bce835d5deb3f55da2a197b9223626e4d5fa3abbe74f24b63</originalsourceid><addsrcrecordid>eNqNkUtv1DAUhSMEEkPhF3QTiSXKcP2K42UbHm01EhIzLJHlx80owxAH2yPUf4-HtGXLytHR9x1bOVV1SWBNCKj3d9vd1dftmgKFNQPKFbBn1YoSQRoimHherYhiqiEc-MvqVUoHgJZKxVbV92vjfuxjOE2-3qCJ0zjt62uT0Ndhqncm7jHX29M8R0xpLFEfppSjGadcDyHWN_czxjSjK9nxkf-AuQSFfl29GMwx4ZuH86L69unjrr9pNl8-3_ZXm8Zx6HKDjA_cQovKESqNsA47JrzwaNkghDfUECWtopS1tEXuxWCYsRYlHyi3LbuobpdeH8xBz3H8aeK9DmbUf4MQ99rEPLojatt1fgDvOOEd9-AVM0J6TqhBLkpV6Xq7dM0x_DphyvoQTnEqz9eUc6UEkVQVii2UiyGliMPTrQT0eRO9bKLPm-iHTYr1brF-ow1DciNODp9MABBSSi4YnD8L3f0_3Y_ZnH95X6bMRb1c1BHxn6IogJQt-wPclaoI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449951729</pqid></control><display><type>article</type><title>Background Learning Based on Target Suppression Constraint for Hyperspectral Target Detection</title><source>DOAJ Directory of Open Access Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Xie, Weiying ; Zhang, Xin ; Li, Yunsong ; Wang, Keyan ; Du, Qian</creator><creatorcontrib>Xie, Weiying ; Zhang, Xin ; Li, Yunsong ; Wang, Keyan ; Du, Qian</creatorcontrib><description>Hyperspectral target detection is critical in both military and civilian applications. However, it is a challenging task due to the complexity of background and the limited samples of target in hyperspectral images (HSIs). In this article, we propose a novel background learning model, called background learning based on target suppression constraint to characterize high-dimensional spectral vectors. Considering insufficient target samples, the model is trained only on the background spectral samples to accurately learn the background distribution. Then the discrepancy between the reconstructed and original HSIs are examined to spot the targets. To obtain a background training dataset, coarse detection is carried out. However, it is quite difficult to retrieve pure background data. Thus, a target suppression constraint is imposed to reduce the impact of suspected target samples on background reconstruction. Experiments on six real HSIs demonstrate that the proposed framework significantly outperforms the current state-of-the-art detection methods and yields higher detection accuracy and lower false alarm rate.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2020.3024903</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Background learning ; Detection ; Engineering ; Engineering, Electrical &amp; Electronic ; False alarms ; Feature extraction ; Gallium nitride ; Generative adversarial networks ; Geography, Physical ; hyperspectral image (HSI) ; Hyperspectral imaging ; Image reconstruction ; Imaging Science &amp; Photographic Technology ; Learning ; Military applications ; Object detection ; Physical Geography ; Physical Sciences ; Remote Sensing ; Science &amp; Technology ; Target detection ; Target recognition ; target suppression constraint ; Technology ; Training ; Vectors</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.5887-5897</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>57</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000577745300005</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c408t-e34f4b06e9c127a5bce835d5deb3f55da2a197b9223626e4d5fa3abbe74f24b63</citedby><cites>FETCH-LOGICAL-c408t-e34f4b06e9c127a5bce835d5deb3f55da2a197b9223626e4d5fa3abbe74f24b63</cites><orcidid>0000-0002-0234-6270 ; 0000-0001-8310-024X ; 0000-0001-8354-7500 ; 0000-0002-9545-718X ; 0000-0002-6455-047X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,2103,2115,4025,27928,27929,27930,28253</link.rule.ids></links><search><creatorcontrib>Xie, Weiying</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Li, Yunsong</creatorcontrib><creatorcontrib>Wang, Keyan</creatorcontrib><creatorcontrib>Du, Qian</creatorcontrib><title>Background Learning Based on Target Suppression Constraint for Hyperspectral Target Detection</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><addtitle>IEEE J-STARS</addtitle><description>Hyperspectral target detection is critical in both military and civilian applications. However, it is a challenging task due to the complexity of background and the limited samples of target in hyperspectral images (HSIs). In this article, we propose a novel background learning model, called background learning based on target suppression constraint to characterize high-dimensional spectral vectors. Considering insufficient target samples, the model is trained only on the background spectral samples to accurately learn the background distribution. Then the discrepancy between the reconstructed and original HSIs are examined to spot the targets. To obtain a background training dataset, coarse detection is carried out. However, it is quite difficult to retrieve pure background data. Thus, a target suppression constraint is imposed to reduce the impact of suspected target samples on background reconstruction. Experiments on six real HSIs demonstrate that the proposed framework significantly outperforms the current state-of-the-art detection methods and yields higher detection accuracy and lower false alarm rate.</description><subject>Background learning</subject><subject>Detection</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>False alarms</subject><subject>Feature extraction</subject><subject>Gallium nitride</subject><subject>Generative adversarial networks</subject><subject>Geography, Physical</subject><subject>hyperspectral image (HSI)</subject><subject>Hyperspectral imaging</subject><subject>Image reconstruction</subject><subject>Imaging Science &amp; Photographic Technology</subject><subject>Learning</subject><subject>Military applications</subject><subject>Object detection</subject><subject>Physical Geography</subject><subject>Physical Sciences</subject><subject>Remote Sensing</subject><subject>Science &amp; Technology</subject><subject>Target detection</subject><subject>Target recognition</subject><subject>target suppression constraint</subject><subject>Technology</subject><subject>Training</subject><subject>Vectors</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkUtv1DAUhSMEEkPhF3QTiSXKcP2K42UbHm01EhIzLJHlx80owxAH2yPUf4-HtGXLytHR9x1bOVV1SWBNCKj3d9vd1dftmgKFNQPKFbBn1YoSQRoimHherYhiqiEc-MvqVUoHgJZKxVbV92vjfuxjOE2-3qCJ0zjt62uT0Ndhqncm7jHX29M8R0xpLFEfppSjGadcDyHWN_czxjSjK9nxkf-AuQSFfl29GMwx4ZuH86L69unjrr9pNl8-3_ZXm8Zx6HKDjA_cQovKESqNsA47JrzwaNkghDfUECWtopS1tEXuxWCYsRYlHyi3LbuobpdeH8xBz3H8aeK9DmbUf4MQ99rEPLojatt1fgDvOOEd9-AVM0J6TqhBLkpV6Xq7dM0x_DphyvoQTnEqz9eUc6UEkVQVii2UiyGliMPTrQT0eRO9bKLPm-iHTYr1brF-ow1DciNODp9MABBSSi4YnD8L3f0_3Y_ZnH95X6bMRb1c1BHxn6IogJQt-wPclaoI</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Xie, Weiying</creator><creator>Zhang, Xin</creator><creator>Li, Yunsong</creator><creator>Wang, Keyan</creator><creator>Du, Qian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0234-6270</orcidid><orcidid>https://orcid.org/0000-0001-8310-024X</orcidid><orcidid>https://orcid.org/0000-0001-8354-7500</orcidid><orcidid>https://orcid.org/0000-0002-9545-718X</orcidid><orcidid>https://orcid.org/0000-0002-6455-047X</orcidid></search><sort><creationdate>2020</creationdate><title>Background Learning Based on Target Suppression Constraint for Hyperspectral Target Detection</title><author>Xie, Weiying ; Zhang, Xin ; Li, Yunsong ; Wang, Keyan ; Du, Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-e34f4b06e9c127a5bce835d5deb3f55da2a197b9223626e4d5fa3abbe74f24b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Background learning</topic><topic>Detection</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>False alarms</topic><topic>Feature extraction</topic><topic>Gallium nitride</topic><topic>Generative adversarial networks</topic><topic>Geography, Physical</topic><topic>hyperspectral image (HSI)</topic><topic>Hyperspectral imaging</topic><topic>Image reconstruction</topic><topic>Imaging Science &amp; Photographic Technology</topic><topic>Learning</topic><topic>Military applications</topic><topic>Object detection</topic><topic>Physical Geography</topic><topic>Physical Sciences</topic><topic>Remote Sensing</topic><topic>Science &amp; Technology</topic><topic>Target detection</topic><topic>Target recognition</topic><topic>target suppression constraint</topic><topic>Technology</topic><topic>Training</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Weiying</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Li, Yunsong</creatorcontrib><creatorcontrib>Wang, Keyan</creatorcontrib><creatorcontrib>Du, Qian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Weiying</au><au>Zhang, Xin</au><au>Li, Yunsong</au><au>Wang, Keyan</au><au>Du, Qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Background Learning Based on Target Suppression Constraint for Hyperspectral Target Detection</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><stitle>IEEE J-STARS</stitle><date>2020</date><risdate>2020</risdate><volume>13</volume><spage>5887</spage><epage>5897</epage><pages>5887-5897</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Hyperspectral target detection is critical in both military and civilian applications. However, it is a challenging task due to the complexity of background and the limited samples of target in hyperspectral images (HSIs). In this article, we propose a novel background learning model, called background learning based on target suppression constraint to characterize high-dimensional spectral vectors. Considering insufficient target samples, the model is trained only on the background spectral samples to accurately learn the background distribution. Then the discrepancy between the reconstructed and original HSIs are examined to spot the targets. To obtain a background training dataset, coarse detection is carried out. However, it is quite difficult to retrieve pure background data. Thus, a target suppression constraint is imposed to reduce the impact of suspected target samples on background reconstruction. Experiments on six real HSIs demonstrate that the proposed framework significantly outperforms the current state-of-the-art detection methods and yields higher detection accuracy and lower false alarm rate.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2020.3024903</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0234-6270</orcidid><orcidid>https://orcid.org/0000-0001-8310-024X</orcidid><orcidid>https://orcid.org/0000-0001-8354-7500</orcidid><orcidid>https://orcid.org/0000-0002-9545-718X</orcidid><orcidid>https://orcid.org/0000-0002-6455-047X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.5887-5897
issn 1939-1404
2151-1535
language eng
recordid cdi_proquest_journals_2449951729
source DOAJ Directory of Open Access Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals
subjects Background learning
Detection
Engineering
Engineering, Electrical & Electronic
False alarms
Feature extraction
Gallium nitride
Generative adversarial networks
Geography, Physical
hyperspectral image (HSI)
Hyperspectral imaging
Image reconstruction
Imaging Science & Photographic Technology
Learning
Military applications
Object detection
Physical Geography
Physical Sciences
Remote Sensing
Science & Technology
Target detection
Target recognition
target suppression constraint
Technology
Training
Vectors
title Background Learning Based on Target Suppression Constraint for Hyperspectral Target Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T10%3A10%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Background%20Learning%20Based%20on%20Target%20Suppression%20Constraint%20for%20Hyperspectral%20Target%20Detection&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Xie,%20Weiying&rft.date=2020&rft.volume=13&rft.spage=5887&rft.epage=5897&rft.pages=5887-5897&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2020.3024903&rft_dat=%3Cproquest_webof%3E2449951729%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449951729&rft_id=info:pmid/&rft_ieee_id=9200776&rft_doaj_id=oai_doaj_org_article_b88df0dc41484d0d93a57d412ae45b63&rfr_iscdi=true