Background Learning Based on Target Suppression Constraint for Hyperspectral Target Detection
Hyperspectral target detection is critical in both military and civilian applications. However, it is a challenging task due to the complexity of background and the limited samples of target in hyperspectral images (HSIs). In this article, we propose a novel background learning model, called backgro...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2020, Vol.13, p.5887-5897 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5897 |
---|---|
container_issue | |
container_start_page | 5887 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 13 |
creator | Xie, Weiying Zhang, Xin Li, Yunsong Wang, Keyan Du, Qian |
description | Hyperspectral target detection is critical in both military and civilian applications. However, it is a challenging task due to the complexity of background and the limited samples of target in hyperspectral images (HSIs). In this article, we propose a novel background learning model, called background learning based on target suppression constraint to characterize high-dimensional spectral vectors. Considering insufficient target samples, the model is trained only on the background spectral samples to accurately learn the background distribution. Then the discrepancy between the reconstructed and original HSIs are examined to spot the targets. To obtain a background training dataset, coarse detection is carried out. However, it is quite difficult to retrieve pure background data. Thus, a target suppression constraint is imposed to reduce the impact of suspected target samples on background reconstruction. Experiments on six real HSIs demonstrate that the proposed framework significantly outperforms the current state-of-the-art detection methods and yields higher detection accuracy and lower false alarm rate. |
doi_str_mv | 10.1109/JSTARS.2020.3024903 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2449951729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9200776</ieee_id><doaj_id>oai_doaj_org_article_b88df0dc41484d0d93a57d412ae45b63</doaj_id><sourcerecordid>2449951729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-e34f4b06e9c127a5bce835d5deb3f55da2a197b9223626e4d5fa3abbe74f24b63</originalsourceid><addsrcrecordid>eNqNkUtv1DAUhSMEEkPhF3QTiSXKcP2K42UbHm01EhIzLJHlx80owxAH2yPUf4-HtGXLytHR9x1bOVV1SWBNCKj3d9vd1dftmgKFNQPKFbBn1YoSQRoimHherYhiqiEc-MvqVUoHgJZKxVbV92vjfuxjOE2-3qCJ0zjt62uT0Ndhqncm7jHX29M8R0xpLFEfppSjGadcDyHWN_czxjSjK9nxkf-AuQSFfl29GMwx4ZuH86L69unjrr9pNl8-3_ZXm8Zx6HKDjA_cQovKESqNsA47JrzwaNkghDfUECWtopS1tEXuxWCYsRYlHyi3LbuobpdeH8xBz3H8aeK9DmbUf4MQ99rEPLojatt1fgDvOOEd9-AVM0J6TqhBLkpV6Xq7dM0x_DphyvoQTnEqz9eUc6UEkVQVii2UiyGliMPTrQT0eRO9bKLPm-iHTYr1brF-ow1DciNODp9MABBSSi4YnD8L3f0_3Y_ZnH95X6bMRb1c1BHxn6IogJQt-wPclaoI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449951729</pqid></control><display><type>article</type><title>Background Learning Based on Target Suppression Constraint for Hyperspectral Target Detection</title><source>DOAJ Directory of Open Access Journals</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Xie, Weiying ; Zhang, Xin ; Li, Yunsong ; Wang, Keyan ; Du, Qian</creator><creatorcontrib>Xie, Weiying ; Zhang, Xin ; Li, Yunsong ; Wang, Keyan ; Du, Qian</creatorcontrib><description>Hyperspectral target detection is critical in both military and civilian applications. However, it is a challenging task due to the complexity of background and the limited samples of target in hyperspectral images (HSIs). In this article, we propose a novel background learning model, called background learning based on target suppression constraint to characterize high-dimensional spectral vectors. Considering insufficient target samples, the model is trained only on the background spectral samples to accurately learn the background distribution. Then the discrepancy between the reconstructed and original HSIs are examined to spot the targets. To obtain a background training dataset, coarse detection is carried out. However, it is quite difficult to retrieve pure background data. Thus, a target suppression constraint is imposed to reduce the impact of suspected target samples on background reconstruction. Experiments on six real HSIs demonstrate that the proposed framework significantly outperforms the current state-of-the-art detection methods and yields higher detection accuracy and lower false alarm rate.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2020.3024903</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Background learning ; Detection ; Engineering ; Engineering, Electrical & Electronic ; False alarms ; Feature extraction ; Gallium nitride ; Generative adversarial networks ; Geography, Physical ; hyperspectral image (HSI) ; Hyperspectral imaging ; Image reconstruction ; Imaging Science & Photographic Technology ; Learning ; Military applications ; Object detection ; Physical Geography ; Physical Sciences ; Remote Sensing ; Science & Technology ; Target detection ; Target recognition ; target suppression constraint ; Technology ; Training ; Vectors</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.5887-5897</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>57</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000577745300005</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c408t-e34f4b06e9c127a5bce835d5deb3f55da2a197b9223626e4d5fa3abbe74f24b63</citedby><cites>FETCH-LOGICAL-c408t-e34f4b06e9c127a5bce835d5deb3f55da2a197b9223626e4d5fa3abbe74f24b63</cites><orcidid>0000-0002-0234-6270 ; 0000-0001-8310-024X ; 0000-0001-8354-7500 ; 0000-0002-9545-718X ; 0000-0002-6455-047X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,2103,2115,4025,27928,27929,27930,28253</link.rule.ids></links><search><creatorcontrib>Xie, Weiying</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Li, Yunsong</creatorcontrib><creatorcontrib>Wang, Keyan</creatorcontrib><creatorcontrib>Du, Qian</creatorcontrib><title>Background Learning Based on Target Suppression Constraint for Hyperspectral Target Detection</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><addtitle>IEEE J-STARS</addtitle><description>Hyperspectral target detection is critical in both military and civilian applications. However, it is a challenging task due to the complexity of background and the limited samples of target in hyperspectral images (HSIs). In this article, we propose a novel background learning model, called background learning based on target suppression constraint to characterize high-dimensional spectral vectors. Considering insufficient target samples, the model is trained only on the background spectral samples to accurately learn the background distribution. Then the discrepancy between the reconstructed and original HSIs are examined to spot the targets. To obtain a background training dataset, coarse detection is carried out. However, it is quite difficult to retrieve pure background data. Thus, a target suppression constraint is imposed to reduce the impact of suspected target samples on background reconstruction. Experiments on six real HSIs demonstrate that the proposed framework significantly outperforms the current state-of-the-art detection methods and yields higher detection accuracy and lower false alarm rate.</description><subject>Background learning</subject><subject>Detection</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>False alarms</subject><subject>Feature extraction</subject><subject>Gallium nitride</subject><subject>Generative adversarial networks</subject><subject>Geography, Physical</subject><subject>hyperspectral image (HSI)</subject><subject>Hyperspectral imaging</subject><subject>Image reconstruction</subject><subject>Imaging Science & Photographic Technology</subject><subject>Learning</subject><subject>Military applications</subject><subject>Object detection</subject><subject>Physical Geography</subject><subject>Physical Sciences</subject><subject>Remote Sensing</subject><subject>Science & Technology</subject><subject>Target detection</subject><subject>Target recognition</subject><subject>target suppression constraint</subject><subject>Technology</subject><subject>Training</subject><subject>Vectors</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkUtv1DAUhSMEEkPhF3QTiSXKcP2K42UbHm01EhIzLJHlx80owxAH2yPUf4-HtGXLytHR9x1bOVV1SWBNCKj3d9vd1dftmgKFNQPKFbBn1YoSQRoimHherYhiqiEc-MvqVUoHgJZKxVbV92vjfuxjOE2-3qCJ0zjt62uT0Ndhqncm7jHX29M8R0xpLFEfppSjGadcDyHWN_czxjSjK9nxkf-AuQSFfl29GMwx4ZuH86L69unjrr9pNl8-3_ZXm8Zx6HKDjA_cQovKESqNsA47JrzwaNkghDfUECWtopS1tEXuxWCYsRYlHyi3LbuobpdeH8xBz3H8aeK9DmbUf4MQ99rEPLojatt1fgDvOOEd9-AVM0J6TqhBLkpV6Xq7dM0x_DphyvoQTnEqz9eUc6UEkVQVii2UiyGliMPTrQT0eRO9bKLPm-iHTYr1brF-ow1DciNODp9MABBSSi4YnD8L3f0_3Y_ZnH95X6bMRb1c1BHxn6IogJQt-wPclaoI</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Xie, Weiying</creator><creator>Zhang, Xin</creator><creator>Li, Yunsong</creator><creator>Wang, Keyan</creator><creator>Du, Qian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0234-6270</orcidid><orcidid>https://orcid.org/0000-0001-8310-024X</orcidid><orcidid>https://orcid.org/0000-0001-8354-7500</orcidid><orcidid>https://orcid.org/0000-0002-9545-718X</orcidid><orcidid>https://orcid.org/0000-0002-6455-047X</orcidid></search><sort><creationdate>2020</creationdate><title>Background Learning Based on Target Suppression Constraint for Hyperspectral Target Detection</title><author>Xie, Weiying ; Zhang, Xin ; Li, Yunsong ; Wang, Keyan ; Du, Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-e34f4b06e9c127a5bce835d5deb3f55da2a197b9223626e4d5fa3abbe74f24b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Background learning</topic><topic>Detection</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>False alarms</topic><topic>Feature extraction</topic><topic>Gallium nitride</topic><topic>Generative adversarial networks</topic><topic>Geography, Physical</topic><topic>hyperspectral image (HSI)</topic><topic>Hyperspectral imaging</topic><topic>Image reconstruction</topic><topic>Imaging Science & Photographic Technology</topic><topic>Learning</topic><topic>Military applications</topic><topic>Object detection</topic><topic>Physical Geography</topic><topic>Physical Sciences</topic><topic>Remote Sensing</topic><topic>Science & Technology</topic><topic>Target detection</topic><topic>Target recognition</topic><topic>target suppression constraint</topic><topic>Technology</topic><topic>Training</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Weiying</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Li, Yunsong</creatorcontrib><creatorcontrib>Wang, Keyan</creatorcontrib><creatorcontrib>Du, Qian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Weiying</au><au>Zhang, Xin</au><au>Li, Yunsong</au><au>Wang, Keyan</au><au>Du, Qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Background Learning Based on Target Suppression Constraint for Hyperspectral Target Detection</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><stitle>IEEE J-STARS</stitle><date>2020</date><risdate>2020</risdate><volume>13</volume><spage>5887</spage><epage>5897</epage><pages>5887-5897</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Hyperspectral target detection is critical in both military and civilian applications. However, it is a challenging task due to the complexity of background and the limited samples of target in hyperspectral images (HSIs). In this article, we propose a novel background learning model, called background learning based on target suppression constraint to characterize high-dimensional spectral vectors. Considering insufficient target samples, the model is trained only on the background spectral samples to accurately learn the background distribution. Then the discrepancy between the reconstructed and original HSIs are examined to spot the targets. To obtain a background training dataset, coarse detection is carried out. However, it is quite difficult to retrieve pure background data. Thus, a target suppression constraint is imposed to reduce the impact of suspected target samples on background reconstruction. Experiments on six real HSIs demonstrate that the proposed framework significantly outperforms the current state-of-the-art detection methods and yields higher detection accuracy and lower false alarm rate.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2020.3024903</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0234-6270</orcidid><orcidid>https://orcid.org/0000-0001-8310-024X</orcidid><orcidid>https://orcid.org/0000-0001-8354-7500</orcidid><orcidid>https://orcid.org/0000-0002-9545-718X</orcidid><orcidid>https://orcid.org/0000-0002-6455-047X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.5887-5897 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_proquest_journals_2449951729 |
source | DOAJ Directory of Open Access Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals |
subjects | Background learning Detection Engineering Engineering, Electrical & Electronic False alarms Feature extraction Gallium nitride Generative adversarial networks Geography, Physical hyperspectral image (HSI) Hyperspectral imaging Image reconstruction Imaging Science & Photographic Technology Learning Military applications Object detection Physical Geography Physical Sciences Remote Sensing Science & Technology Target detection Target recognition target suppression constraint Technology Training Vectors |
title | Background Learning Based on Target Suppression Constraint for Hyperspectral Target Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T10%3A10%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Background%20Learning%20Based%20on%20Target%20Suppression%20Constraint%20for%20Hyperspectral%20Target%20Detection&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Xie,%20Weiying&rft.date=2020&rft.volume=13&rft.spage=5887&rft.epage=5897&rft.pages=5887-5897&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2020.3024903&rft_dat=%3Cproquest_webof%3E2449951729%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449951729&rft_id=info:pmid/&rft_ieee_id=9200776&rft_doaj_id=oai_doaj_org_article_b88df0dc41484d0d93a57d412ae45b63&rfr_iscdi=true |