AUV-Aided Energy-Efficient Data Collection in Underwater Acoustic Sensor Networks
With the development of the Internet of Underwater Things (IoUT), two critical problems have been prominent, i.e., the energy constraint of underwater devices and large demand for data collection. In this article, we introduce an autonomous underwater vehicle (AUV)-aided underwater acoustic sensor n...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2020-10, Vol.7 (10), p.10010-10022 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10022 |
---|---|
container_issue | 10 |
container_start_page | 10010 |
container_title | IEEE internet of things journal |
container_volume | 7 |
creator | Zhuo, Xiaoxiao Liu, Meiyan Wei, Yan Yu, Guanding Qu, Fengzhong Sun, Rui |
description | With the development of the Internet of Underwater Things (IoUT), two critical problems have been prominent, i.e., the energy constraint of underwater devices and large demand for data collection. In this article, we introduce an autonomous underwater vehicle (AUV)-aided underwater acoustic sensor networks (UWSNs) to solve these problems. To improve the performance of UWSNs, we formulate an optimization problem to maximize the energy consumption utility, which is defined to balance the energy consumption and network throughput. To solve this optimization problem, we decompose it into four parts. First, due to the constraint of communication distance, we construct a cluster-based network and formulate the selection of cluster heads as a maximal clique problem (MCP). Second, the clustering algorithm is proposed. Third, we design a novel media access control (MAC) protocol to coordinate data transmission between AUV and cluster heads, among intracluster nodes, as well as among intercluster nodes. Finally, path planning of AUV is formulated as a traveling salesman problem to minimize AUV travel time. Based on the above analysis, two algorithms, namely, AUV-aided energy-efficient data collection (AEEDCO) and approximate AUV-aided energy-efficient data collection (AEEDCO-A), are developed accordingly. The simulation results show that the proposed algorithms perform well and are very promising in UWSNs with demand for large-scale communication, large system capacity, long-term monitoring, and high data traffic load. |
doi_str_mv | 10.1109/JIOT.2020.2988697 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2449951653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9072166</ieee_id><sourcerecordid>2449951653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-13d7539358f061659387224363df8704bcb245525d8cf06d8c909ac9540e2fc3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWGp_gHgJeN6aj012c1xqrZViEVuvYZudSGrd1CSl9N-7pUW8zMzhed-BB6FbSoaUEvXwMp0vhowwMmSqLKUqLlCPcVZkuZTs8t99jQYxrgkhXUxQJXvorVp-ZJVroMHjFsLnIRtb64yDNuHHOtV45DcbMMn5FrsWL9sGwr5OEHBl_C4mZ_A7tNEH_App78NXvEFXtt5EGJx3Hy2exovRczabT6ajapYZpnjKKG8KwRUXpSWSSqF4WTCWc8kbWxYkX5kVy4VgoilNR3RTEVUbJXICzBreR_en2m3wPzuISa_9LrTdR83yXCnRdfKOoifKBB9jAKu3wX3X4aAp0Ud3-uhOH93ps7suc3fKOAD44xUpGJWS_wKkmGiI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449951653</pqid></control><display><type>article</type><title>AUV-Aided Energy-Efficient Data Collection in Underwater Acoustic Sensor Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Zhuo, Xiaoxiao ; Liu, Meiyan ; Wei, Yan ; Yu, Guanding ; Qu, Fengzhong ; Sun, Rui</creator><creatorcontrib>Zhuo, Xiaoxiao ; Liu, Meiyan ; Wei, Yan ; Yu, Guanding ; Qu, Fengzhong ; Sun, Rui</creatorcontrib><description>With the development of the Internet of Underwater Things (IoUT), two critical problems have been prominent, i.e., the energy constraint of underwater devices and large demand for data collection. In this article, we introduce an autonomous underwater vehicle (AUV)-aided underwater acoustic sensor networks (UWSNs) to solve these problems. To improve the performance of UWSNs, we formulate an optimization problem to maximize the energy consumption utility, which is defined to balance the energy consumption and network throughput. To solve this optimization problem, we decompose it into four parts. First, due to the constraint of communication distance, we construct a cluster-based network and formulate the selection of cluster heads as a maximal clique problem (MCP). Second, the clustering algorithm is proposed. Third, we design a novel media access control (MAC) protocol to coordinate data transmission between AUV and cluster heads, among intracluster nodes, as well as among intercluster nodes. Finally, path planning of AUV is formulated as a traveling salesman problem to minimize AUV travel time. Based on the above analysis, two algorithms, namely, AUV-aided energy-efficient data collection (AEEDCO) and approximate AUV-aided energy-efficient data collection (AEEDCO-A), are developed accordingly. The simulation results show that the proposed algorithms perform well and are very promising in UWSNs with demand for large-scale communication, large system capacity, long-term monitoring, and high data traffic load.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2020.2988697</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Access control ; Algorithms ; Autonomous underwater vehicle (AUV)-aided underwater acoustic sensor network (UWSN) ; Autonomous underwater vehicles ; Clustering ; Clustering algorithms ; Communications systems ; Data collection ; Data transmission ; Delays ; Energy consumption ; energy model ; Internet of Things ; Internet of Underwater Things (IoUT) ; network throughput ; Nodes ; Optimization ; Path planning ; Prediction algorithms ; Sensors ; Throughput ; Traffic capacity ; Travel time ; Traveling salesman problem ; Underwater acoustics</subject><ispartof>IEEE internet of things journal, 2020-10, Vol.7 (10), p.10010-10022</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-13d7539358f061659387224363df8704bcb245525d8cf06d8c909ac9540e2fc3</citedby><cites>FETCH-LOGICAL-c293t-13d7539358f061659387224363df8704bcb245525d8cf06d8c909ac9540e2fc3</cites><orcidid>0000-0003-2252-9944 ; 0000-0003-2006-0951 ; 0000-0003-1354-2557 ; 0000-0001-8384-6922 ; 0000-0002-3575-2005</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9072166$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9072166$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhuo, Xiaoxiao</creatorcontrib><creatorcontrib>Liu, Meiyan</creatorcontrib><creatorcontrib>Wei, Yan</creatorcontrib><creatorcontrib>Yu, Guanding</creatorcontrib><creatorcontrib>Qu, Fengzhong</creatorcontrib><creatorcontrib>Sun, Rui</creatorcontrib><title>AUV-Aided Energy-Efficient Data Collection in Underwater Acoustic Sensor Networks</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>With the development of the Internet of Underwater Things (IoUT), two critical problems have been prominent, i.e., the energy constraint of underwater devices and large demand for data collection. In this article, we introduce an autonomous underwater vehicle (AUV)-aided underwater acoustic sensor networks (UWSNs) to solve these problems. To improve the performance of UWSNs, we formulate an optimization problem to maximize the energy consumption utility, which is defined to balance the energy consumption and network throughput. To solve this optimization problem, we decompose it into four parts. First, due to the constraint of communication distance, we construct a cluster-based network and formulate the selection of cluster heads as a maximal clique problem (MCP). Second, the clustering algorithm is proposed. Third, we design a novel media access control (MAC) protocol to coordinate data transmission between AUV and cluster heads, among intracluster nodes, as well as among intercluster nodes. Finally, path planning of AUV is formulated as a traveling salesman problem to minimize AUV travel time. Based on the above analysis, two algorithms, namely, AUV-aided energy-efficient data collection (AEEDCO) and approximate AUV-aided energy-efficient data collection (AEEDCO-A), are developed accordingly. The simulation results show that the proposed algorithms perform well and are very promising in UWSNs with demand for large-scale communication, large system capacity, long-term monitoring, and high data traffic load.</description><subject>Access control</subject><subject>Algorithms</subject><subject>Autonomous underwater vehicle (AUV)-aided underwater acoustic sensor network (UWSN)</subject><subject>Autonomous underwater vehicles</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Communications systems</subject><subject>Data collection</subject><subject>Data transmission</subject><subject>Delays</subject><subject>Energy consumption</subject><subject>energy model</subject><subject>Internet of Things</subject><subject>Internet of Underwater Things (IoUT)</subject><subject>network throughput</subject><subject>Nodes</subject><subject>Optimization</subject><subject>Path planning</subject><subject>Prediction algorithms</subject><subject>Sensors</subject><subject>Throughput</subject><subject>Traffic capacity</subject><subject>Travel time</subject><subject>Traveling salesman problem</subject><subject>Underwater acoustics</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWGp_gHgJeN6aj012c1xqrZViEVuvYZudSGrd1CSl9N-7pUW8zMzhed-BB6FbSoaUEvXwMp0vhowwMmSqLKUqLlCPcVZkuZTs8t99jQYxrgkhXUxQJXvorVp-ZJVroMHjFsLnIRtb64yDNuHHOtV45DcbMMn5FrsWL9sGwr5OEHBl_C4mZ_A7tNEH_App78NXvEFXtt5EGJx3Hy2exovRczabT6ajapYZpnjKKG8KwRUXpSWSSqF4WTCWc8kbWxYkX5kVy4VgoilNR3RTEVUbJXICzBreR_en2m3wPzuISa_9LrTdR83yXCnRdfKOoifKBB9jAKu3wX3X4aAp0Ud3-uhOH93ps7suc3fKOAD44xUpGJWS_wKkmGiI</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Zhuo, Xiaoxiao</creator><creator>Liu, Meiyan</creator><creator>Wei, Yan</creator><creator>Yu, Guanding</creator><creator>Qu, Fengzhong</creator><creator>Sun, Rui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2252-9944</orcidid><orcidid>https://orcid.org/0000-0003-2006-0951</orcidid><orcidid>https://orcid.org/0000-0003-1354-2557</orcidid><orcidid>https://orcid.org/0000-0001-8384-6922</orcidid><orcidid>https://orcid.org/0000-0002-3575-2005</orcidid></search><sort><creationdate>20201001</creationdate><title>AUV-Aided Energy-Efficient Data Collection in Underwater Acoustic Sensor Networks</title><author>Zhuo, Xiaoxiao ; Liu, Meiyan ; Wei, Yan ; Yu, Guanding ; Qu, Fengzhong ; Sun, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-13d7539358f061659387224363df8704bcb245525d8cf06d8c909ac9540e2fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Access control</topic><topic>Algorithms</topic><topic>Autonomous underwater vehicle (AUV)-aided underwater acoustic sensor network (UWSN)</topic><topic>Autonomous underwater vehicles</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Communications systems</topic><topic>Data collection</topic><topic>Data transmission</topic><topic>Delays</topic><topic>Energy consumption</topic><topic>energy model</topic><topic>Internet of Things</topic><topic>Internet of Underwater Things (IoUT)</topic><topic>network throughput</topic><topic>Nodes</topic><topic>Optimization</topic><topic>Path planning</topic><topic>Prediction algorithms</topic><topic>Sensors</topic><topic>Throughput</topic><topic>Traffic capacity</topic><topic>Travel time</topic><topic>Traveling salesman problem</topic><topic>Underwater acoustics</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhuo, Xiaoxiao</creatorcontrib><creatorcontrib>Liu, Meiyan</creatorcontrib><creatorcontrib>Wei, Yan</creatorcontrib><creatorcontrib>Yu, Guanding</creatorcontrib><creatorcontrib>Qu, Fengzhong</creatorcontrib><creatorcontrib>Sun, Rui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhuo, Xiaoxiao</au><au>Liu, Meiyan</au><au>Wei, Yan</au><au>Yu, Guanding</au><au>Qu, Fengzhong</au><au>Sun, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AUV-Aided Energy-Efficient Data Collection in Underwater Acoustic Sensor Networks</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>7</volume><issue>10</issue><spage>10010</spage><epage>10022</epage><pages>10010-10022</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>With the development of the Internet of Underwater Things (IoUT), two critical problems have been prominent, i.e., the energy constraint of underwater devices and large demand for data collection. In this article, we introduce an autonomous underwater vehicle (AUV)-aided underwater acoustic sensor networks (UWSNs) to solve these problems. To improve the performance of UWSNs, we formulate an optimization problem to maximize the energy consumption utility, which is defined to balance the energy consumption and network throughput. To solve this optimization problem, we decompose it into four parts. First, due to the constraint of communication distance, we construct a cluster-based network and formulate the selection of cluster heads as a maximal clique problem (MCP). Second, the clustering algorithm is proposed. Third, we design a novel media access control (MAC) protocol to coordinate data transmission between AUV and cluster heads, among intracluster nodes, as well as among intercluster nodes. Finally, path planning of AUV is formulated as a traveling salesman problem to minimize AUV travel time. Based on the above analysis, two algorithms, namely, AUV-aided energy-efficient data collection (AEEDCO) and approximate AUV-aided energy-efficient data collection (AEEDCO-A), are developed accordingly. The simulation results show that the proposed algorithms perform well and are very promising in UWSNs with demand for large-scale communication, large system capacity, long-term monitoring, and high data traffic load.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2020.2988697</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2252-9944</orcidid><orcidid>https://orcid.org/0000-0003-2006-0951</orcidid><orcidid>https://orcid.org/0000-0003-1354-2557</orcidid><orcidid>https://orcid.org/0000-0001-8384-6922</orcidid><orcidid>https://orcid.org/0000-0002-3575-2005</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2020-10, Vol.7 (10), p.10010-10022 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_proquest_journals_2449951653 |
source | IEEE Electronic Library (IEL) |
subjects | Access control Algorithms Autonomous underwater vehicle (AUV)-aided underwater acoustic sensor network (UWSN) Autonomous underwater vehicles Clustering Clustering algorithms Communications systems Data collection Data transmission Delays Energy consumption energy model Internet of Things Internet of Underwater Things (IoUT) network throughput Nodes Optimization Path planning Prediction algorithms Sensors Throughput Traffic capacity Travel time Traveling salesman problem Underwater acoustics |
title | AUV-Aided Energy-Efficient Data Collection in Underwater Acoustic Sensor Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A48%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AUV-Aided%20Energy-Efficient%20Data%20Collection%20in%20Underwater%20Acoustic%20Sensor%20Networks&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Zhuo,%20Xiaoxiao&rft.date=2020-10-01&rft.volume=7&rft.issue=10&rft.spage=10010&rft.epage=10022&rft.pages=10010-10022&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2020.2988697&rft_dat=%3Cproquest_RIE%3E2449951653%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449951653&rft_id=info:pmid/&rft_ieee_id=9072166&rfr_iscdi=true |