AUV-Aided Energy-Efficient Data Collection in Underwater Acoustic Sensor Networks

With the development of the Internet of Underwater Things (IoUT), two critical problems have been prominent, i.e., the energy constraint of underwater devices and large demand for data collection. In this article, we introduce an autonomous underwater vehicle (AUV)-aided underwater acoustic sensor n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2020-10, Vol.7 (10), p.10010-10022
Hauptverfasser: Zhuo, Xiaoxiao, Liu, Meiyan, Wei, Yan, Yu, Guanding, Qu, Fengzhong, Sun, Rui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10022
container_issue 10
container_start_page 10010
container_title IEEE internet of things journal
container_volume 7
creator Zhuo, Xiaoxiao
Liu, Meiyan
Wei, Yan
Yu, Guanding
Qu, Fengzhong
Sun, Rui
description With the development of the Internet of Underwater Things (IoUT), two critical problems have been prominent, i.e., the energy constraint of underwater devices and large demand for data collection. In this article, we introduce an autonomous underwater vehicle (AUV)-aided underwater acoustic sensor networks (UWSNs) to solve these problems. To improve the performance of UWSNs, we formulate an optimization problem to maximize the energy consumption utility, which is defined to balance the energy consumption and network throughput. To solve this optimization problem, we decompose it into four parts. First, due to the constraint of communication distance, we construct a cluster-based network and formulate the selection of cluster heads as a maximal clique problem (MCP). Second, the clustering algorithm is proposed. Third, we design a novel media access control (MAC) protocol to coordinate data transmission between AUV and cluster heads, among intracluster nodes, as well as among intercluster nodes. Finally, path planning of AUV is formulated as a traveling salesman problem to minimize AUV travel time. Based on the above analysis, two algorithms, namely, AUV-aided energy-efficient data collection (AEEDCO) and approximate AUV-aided energy-efficient data collection (AEEDCO-A), are developed accordingly. The simulation results show that the proposed algorithms perform well and are very promising in UWSNs with demand for large-scale communication, large system capacity, long-term monitoring, and high data traffic load.
doi_str_mv 10.1109/JIOT.2020.2988697
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2449951653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9072166</ieee_id><sourcerecordid>2449951653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-13d7539358f061659387224363df8704bcb245525d8cf06d8c909ac9540e2fc3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWGp_gHgJeN6aj012c1xqrZViEVuvYZudSGrd1CSl9N-7pUW8zMzhed-BB6FbSoaUEvXwMp0vhowwMmSqLKUqLlCPcVZkuZTs8t99jQYxrgkhXUxQJXvorVp-ZJVroMHjFsLnIRtb64yDNuHHOtV45DcbMMn5FrsWL9sGwr5OEHBl_C4mZ_A7tNEH_App78NXvEFXtt5EGJx3Hy2exovRczabT6ajapYZpnjKKG8KwRUXpSWSSqF4WTCWc8kbWxYkX5kVy4VgoilNR3RTEVUbJXICzBreR_en2m3wPzuISa_9LrTdR83yXCnRdfKOoifKBB9jAKu3wX3X4aAp0Ud3-uhOH93ps7suc3fKOAD44xUpGJWS_wKkmGiI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449951653</pqid></control><display><type>article</type><title>AUV-Aided Energy-Efficient Data Collection in Underwater Acoustic Sensor Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Zhuo, Xiaoxiao ; Liu, Meiyan ; Wei, Yan ; Yu, Guanding ; Qu, Fengzhong ; Sun, Rui</creator><creatorcontrib>Zhuo, Xiaoxiao ; Liu, Meiyan ; Wei, Yan ; Yu, Guanding ; Qu, Fengzhong ; Sun, Rui</creatorcontrib><description>With the development of the Internet of Underwater Things (IoUT), two critical problems have been prominent, i.e., the energy constraint of underwater devices and large demand for data collection. In this article, we introduce an autonomous underwater vehicle (AUV)-aided underwater acoustic sensor networks (UWSNs) to solve these problems. To improve the performance of UWSNs, we formulate an optimization problem to maximize the energy consumption utility, which is defined to balance the energy consumption and network throughput. To solve this optimization problem, we decompose it into four parts. First, due to the constraint of communication distance, we construct a cluster-based network and formulate the selection of cluster heads as a maximal clique problem (MCP). Second, the clustering algorithm is proposed. Third, we design a novel media access control (MAC) protocol to coordinate data transmission between AUV and cluster heads, among intracluster nodes, as well as among intercluster nodes. Finally, path planning of AUV is formulated as a traveling salesman problem to minimize AUV travel time. Based on the above analysis, two algorithms, namely, AUV-aided energy-efficient data collection (AEEDCO) and approximate AUV-aided energy-efficient data collection (AEEDCO-A), are developed accordingly. The simulation results show that the proposed algorithms perform well and are very promising in UWSNs with demand for large-scale communication, large system capacity, long-term monitoring, and high data traffic load.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2020.2988697</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Access control ; Algorithms ; Autonomous underwater vehicle (AUV)-aided underwater acoustic sensor network (UWSN) ; Autonomous underwater vehicles ; Clustering ; Clustering algorithms ; Communications systems ; Data collection ; Data transmission ; Delays ; Energy consumption ; energy model ; Internet of Things ; Internet of Underwater Things (IoUT) ; network throughput ; Nodes ; Optimization ; Path planning ; Prediction algorithms ; Sensors ; Throughput ; Traffic capacity ; Travel time ; Traveling salesman problem ; Underwater acoustics</subject><ispartof>IEEE internet of things journal, 2020-10, Vol.7 (10), p.10010-10022</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-13d7539358f061659387224363df8704bcb245525d8cf06d8c909ac9540e2fc3</citedby><cites>FETCH-LOGICAL-c293t-13d7539358f061659387224363df8704bcb245525d8cf06d8c909ac9540e2fc3</cites><orcidid>0000-0003-2252-9944 ; 0000-0003-2006-0951 ; 0000-0003-1354-2557 ; 0000-0001-8384-6922 ; 0000-0002-3575-2005</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9072166$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9072166$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhuo, Xiaoxiao</creatorcontrib><creatorcontrib>Liu, Meiyan</creatorcontrib><creatorcontrib>Wei, Yan</creatorcontrib><creatorcontrib>Yu, Guanding</creatorcontrib><creatorcontrib>Qu, Fengzhong</creatorcontrib><creatorcontrib>Sun, Rui</creatorcontrib><title>AUV-Aided Energy-Efficient Data Collection in Underwater Acoustic Sensor Networks</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>With the development of the Internet of Underwater Things (IoUT), two critical problems have been prominent, i.e., the energy constraint of underwater devices and large demand for data collection. In this article, we introduce an autonomous underwater vehicle (AUV)-aided underwater acoustic sensor networks (UWSNs) to solve these problems. To improve the performance of UWSNs, we formulate an optimization problem to maximize the energy consumption utility, which is defined to balance the energy consumption and network throughput. To solve this optimization problem, we decompose it into four parts. First, due to the constraint of communication distance, we construct a cluster-based network and formulate the selection of cluster heads as a maximal clique problem (MCP). Second, the clustering algorithm is proposed. Third, we design a novel media access control (MAC) protocol to coordinate data transmission between AUV and cluster heads, among intracluster nodes, as well as among intercluster nodes. Finally, path planning of AUV is formulated as a traveling salesman problem to minimize AUV travel time. Based on the above analysis, two algorithms, namely, AUV-aided energy-efficient data collection (AEEDCO) and approximate AUV-aided energy-efficient data collection (AEEDCO-A), are developed accordingly. The simulation results show that the proposed algorithms perform well and are very promising in UWSNs with demand for large-scale communication, large system capacity, long-term monitoring, and high data traffic load.</description><subject>Access control</subject><subject>Algorithms</subject><subject>Autonomous underwater vehicle (AUV)-aided underwater acoustic sensor network (UWSN)</subject><subject>Autonomous underwater vehicles</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Communications systems</subject><subject>Data collection</subject><subject>Data transmission</subject><subject>Delays</subject><subject>Energy consumption</subject><subject>energy model</subject><subject>Internet of Things</subject><subject>Internet of Underwater Things (IoUT)</subject><subject>network throughput</subject><subject>Nodes</subject><subject>Optimization</subject><subject>Path planning</subject><subject>Prediction algorithms</subject><subject>Sensors</subject><subject>Throughput</subject><subject>Traffic capacity</subject><subject>Travel time</subject><subject>Traveling salesman problem</subject><subject>Underwater acoustics</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWGp_gHgJeN6aj012c1xqrZViEVuvYZudSGrd1CSl9N-7pUW8zMzhed-BB6FbSoaUEvXwMp0vhowwMmSqLKUqLlCPcVZkuZTs8t99jQYxrgkhXUxQJXvorVp-ZJVroMHjFsLnIRtb64yDNuHHOtV45DcbMMn5FrsWL9sGwr5OEHBl_C4mZ_A7tNEH_App78NXvEFXtt5EGJx3Hy2exovRczabT6ajapYZpnjKKG8KwRUXpSWSSqF4WTCWc8kbWxYkX5kVy4VgoilNR3RTEVUbJXICzBreR_en2m3wPzuISa_9LrTdR83yXCnRdfKOoifKBB9jAKu3wX3X4aAp0Ud3-uhOH93ps7suc3fKOAD44xUpGJWS_wKkmGiI</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Zhuo, Xiaoxiao</creator><creator>Liu, Meiyan</creator><creator>Wei, Yan</creator><creator>Yu, Guanding</creator><creator>Qu, Fengzhong</creator><creator>Sun, Rui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2252-9944</orcidid><orcidid>https://orcid.org/0000-0003-2006-0951</orcidid><orcidid>https://orcid.org/0000-0003-1354-2557</orcidid><orcidid>https://orcid.org/0000-0001-8384-6922</orcidid><orcidid>https://orcid.org/0000-0002-3575-2005</orcidid></search><sort><creationdate>20201001</creationdate><title>AUV-Aided Energy-Efficient Data Collection in Underwater Acoustic Sensor Networks</title><author>Zhuo, Xiaoxiao ; Liu, Meiyan ; Wei, Yan ; Yu, Guanding ; Qu, Fengzhong ; Sun, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-13d7539358f061659387224363df8704bcb245525d8cf06d8c909ac9540e2fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Access control</topic><topic>Algorithms</topic><topic>Autonomous underwater vehicle (AUV)-aided underwater acoustic sensor network (UWSN)</topic><topic>Autonomous underwater vehicles</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Communications systems</topic><topic>Data collection</topic><topic>Data transmission</topic><topic>Delays</topic><topic>Energy consumption</topic><topic>energy model</topic><topic>Internet of Things</topic><topic>Internet of Underwater Things (IoUT)</topic><topic>network throughput</topic><topic>Nodes</topic><topic>Optimization</topic><topic>Path planning</topic><topic>Prediction algorithms</topic><topic>Sensors</topic><topic>Throughput</topic><topic>Traffic capacity</topic><topic>Travel time</topic><topic>Traveling salesman problem</topic><topic>Underwater acoustics</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhuo, Xiaoxiao</creatorcontrib><creatorcontrib>Liu, Meiyan</creatorcontrib><creatorcontrib>Wei, Yan</creatorcontrib><creatorcontrib>Yu, Guanding</creatorcontrib><creatorcontrib>Qu, Fengzhong</creatorcontrib><creatorcontrib>Sun, Rui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhuo, Xiaoxiao</au><au>Liu, Meiyan</au><au>Wei, Yan</au><au>Yu, Guanding</au><au>Qu, Fengzhong</au><au>Sun, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AUV-Aided Energy-Efficient Data Collection in Underwater Acoustic Sensor Networks</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>7</volume><issue>10</issue><spage>10010</spage><epage>10022</epage><pages>10010-10022</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>With the development of the Internet of Underwater Things (IoUT), two critical problems have been prominent, i.e., the energy constraint of underwater devices and large demand for data collection. In this article, we introduce an autonomous underwater vehicle (AUV)-aided underwater acoustic sensor networks (UWSNs) to solve these problems. To improve the performance of UWSNs, we formulate an optimization problem to maximize the energy consumption utility, which is defined to balance the energy consumption and network throughput. To solve this optimization problem, we decompose it into four parts. First, due to the constraint of communication distance, we construct a cluster-based network and formulate the selection of cluster heads as a maximal clique problem (MCP). Second, the clustering algorithm is proposed. Third, we design a novel media access control (MAC) protocol to coordinate data transmission between AUV and cluster heads, among intracluster nodes, as well as among intercluster nodes. Finally, path planning of AUV is formulated as a traveling salesman problem to minimize AUV travel time. Based on the above analysis, two algorithms, namely, AUV-aided energy-efficient data collection (AEEDCO) and approximate AUV-aided energy-efficient data collection (AEEDCO-A), are developed accordingly. The simulation results show that the proposed algorithms perform well and are very promising in UWSNs with demand for large-scale communication, large system capacity, long-term monitoring, and high data traffic load.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2020.2988697</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2252-9944</orcidid><orcidid>https://orcid.org/0000-0003-2006-0951</orcidid><orcidid>https://orcid.org/0000-0003-1354-2557</orcidid><orcidid>https://orcid.org/0000-0001-8384-6922</orcidid><orcidid>https://orcid.org/0000-0002-3575-2005</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2020-10, Vol.7 (10), p.10010-10022
issn 2327-4662
2327-4662
language eng
recordid cdi_proquest_journals_2449951653
source IEEE Electronic Library (IEL)
subjects Access control
Algorithms
Autonomous underwater vehicle (AUV)-aided underwater acoustic sensor network (UWSN)
Autonomous underwater vehicles
Clustering
Clustering algorithms
Communications systems
Data collection
Data transmission
Delays
Energy consumption
energy model
Internet of Things
Internet of Underwater Things (IoUT)
network throughput
Nodes
Optimization
Path planning
Prediction algorithms
Sensors
Throughput
Traffic capacity
Travel time
Traveling salesman problem
Underwater acoustics
title AUV-Aided Energy-Efficient Data Collection in Underwater Acoustic Sensor Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A48%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AUV-Aided%20Energy-Efficient%20Data%20Collection%20in%20Underwater%20Acoustic%20Sensor%20Networks&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Zhuo,%20Xiaoxiao&rft.date=2020-10-01&rft.volume=7&rft.issue=10&rft.spage=10010&rft.epage=10022&rft.pages=10010-10022&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2020.2988697&rft_dat=%3Cproquest_RIE%3E2449951653%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449951653&rft_id=info:pmid/&rft_ieee_id=9072166&rfr_iscdi=true