Reduced Threshold Voltages and Enhanced Mobilities in Diketopyrrolopyrrole–Dithienothiophene Polymer‐Based Organic Transistor by Interface Engineering
Flexible and low‐power consuming integrated circuits are some of the basic requirements for smart wearable devices. High mobility solution‐processed organic field‐effect transistors (OFETs) have the potential to make a big impact in printed electronic circuits, but their overall performance is curre...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. A, Applications and materials science Applications and materials science, 2020-10, Vol.217 (19), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 19 |
container_start_page | |
container_title | Physica status solidi. A, Applications and materials science |
container_volume | 217 |
creator | Patil, Basanagouda B. Takeda, Yasunori Do, Thu Trang Singh, Amandeep Sekine, Tomohito Yambem, Soniya D. Tokito, Shizuo Singh, Samarendra P. Pandey, Ajay K. Sonar, Prashant |
description | Flexible and low‐power consuming integrated circuits are some of the basic requirements for smart wearable devices. High mobility solution‐processed organic field‐effect transistors (OFETs) have the potential to make a big impact in printed electronic circuits, but their overall performance is currently limited by unusually high threshold voltages (Vth). Herein, systematic optimization of donor–acceptor conjugated polymer, based on dithienothiophene (DTT) and thiophene‐flanked diketopyrrolopyrrole (DPP), namely, PDPPT–DTT, OFETs by application of self‐assembled monolayers (SAMs) at the semiconductor–dielectric, and semiconductor–metal interfaces is reported. The results clearly exhibit that simultaneous application of octyltrichlorosilane (OTS) as semiconductor–dielectric interface modifying layer and pentafluorobenzene thiol (PFBT) as semiconductor–metal interface modifying layer results in significantly lower Vth and subthreshold slope values from −14.07 V and 13.26 (V Dec−1) to +1.06 V and 7.11 (V Dec−1), respectively. This tailored approach is also beneficial in enhancing hole mobility values by an order of magnitude from 0.01 to 0.5 cm2 V−1 s−1 along with the possibility of switching from hole accumulation mode (Vth = −3.75 V) to depletion mode (Vth = +1.06 V) through device engineering. Simultaneous interface engineering reveals OFET electronic properties can be fine‐tuned for robust circuits and low power electronic applications.
For printed electronics to reach its full potential solution processed and bandgap tunable organic materials showcasing high performance are crucial. Herein, systematic optimization of high mobility field effect transistors with judicious interface engineering to reduce threshold voltage for robust operation is presented. Effective SAM treatment offers simultaneous control over maintaining high mobility and low threshold voltage. |
doi_str_mv | 10.1002/pssa.202000097 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2449803552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2449803552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3177-2e6c237e76fc4487fef74bc51e39edca7b4683f003216f85eb7cc4aaf6c18ded3</originalsourceid><addsrcrecordid>eNqFUL1OwzAQjhBIQGFltsTcYjtOnIz8U6moiBbWyHHOiSHYwU6FsvURkNh4vD4JqVrByA13p7vvR_qC4ITgEcGYnjXeixHFFPeV8p3ggCQxHcYhSXd_d4z3g0PvXzBmEePkIPh-hGIhoUDzyoGvbF2gZ1u3ogSPhCnQtamEWf_vba5r3er-rg260q_Q2qZzztbbAavl15VuKw3G9t02FRhAD7bu3sCtlp8XwvcyU1cKoyWaO2G89q11KO_Q2LTglJDQ-5XaADhtyqNgT4naw_F2DoKnm-v55d1wMr0dX55PhjIknA8pxJKGHHisJGMJV6A4y2VEIEyhkILnLE5ChXFISaySCHIuJRNCxZIkBRThIDjd6DbOvi_At9mLXTjTW2aUsTTBYRTRHjXaoKSz3jtQWeP0m3BdRnC2zj9b55_95t8T0g3hQ9fQ_YPOHmaz8z_uD4tbkPI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449803552</pqid></control><display><type>article</type><title>Reduced Threshold Voltages and Enhanced Mobilities in Diketopyrrolopyrrole–Dithienothiophene Polymer‐Based Organic Transistor by Interface Engineering</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Patil, Basanagouda B. ; Takeda, Yasunori ; Do, Thu Trang ; Singh, Amandeep ; Sekine, Tomohito ; Yambem, Soniya D. ; Tokito, Shizuo ; Singh, Samarendra P. ; Pandey, Ajay K. ; Sonar, Prashant</creator><creatorcontrib>Patil, Basanagouda B. ; Takeda, Yasunori ; Do, Thu Trang ; Singh, Amandeep ; Sekine, Tomohito ; Yambem, Soniya D. ; Tokito, Shizuo ; Singh, Samarendra P. ; Pandey, Ajay K. ; Sonar, Prashant</creatorcontrib><description>Flexible and low‐power consuming integrated circuits are some of the basic requirements for smart wearable devices. High mobility solution‐processed organic field‐effect transistors (OFETs) have the potential to make a big impact in printed electronic circuits, but their overall performance is currently limited by unusually high threshold voltages (Vth). Herein, systematic optimization of donor–acceptor conjugated polymer, based on dithienothiophene (DTT) and thiophene‐flanked diketopyrrolopyrrole (DPP), namely, PDPPT–DTT, OFETs by application of self‐assembled monolayers (SAMs) at the semiconductor–dielectric, and semiconductor–metal interfaces is reported. The results clearly exhibit that simultaneous application of octyltrichlorosilane (OTS) as semiconductor–dielectric interface modifying layer and pentafluorobenzene thiol (PFBT) as semiconductor–metal interface modifying layer results in significantly lower Vth and subthreshold slope values from −14.07 V and 13.26 (V Dec−1) to +1.06 V and 7.11 (V Dec−1), respectively. This tailored approach is also beneficial in enhancing hole mobility values by an order of magnitude from 0.01 to 0.5 cm2 V−1 s−1 along with the possibility of switching from hole accumulation mode (Vth = −3.75 V) to depletion mode (Vth = +1.06 V) through device engineering. Simultaneous interface engineering reveals OFET electronic properties can be fine‐tuned for robust circuits and low power electronic applications.
For printed electronics to reach its full potential solution processed and bandgap tunable organic materials showcasing high performance are crucial. Herein, systematic optimization of high mobility field effect transistors with judicious interface engineering to reduce threshold voltage for robust operation is presented. Effective SAM treatment offers simultaneous control over maintaining high mobility and low threshold voltage.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.202000097</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Circuits ; Depletion ; donor–acceptor polymers ; Electronic circuits ; Field effect transistors ; field-effect mobility ; Hole mobility ; hysteresis ; Integrated circuits ; Interfaces ; Optimization ; organic thin-film transistors ; Polymers ; Power consumption ; Power management ; self-assembled monolayers ; Semiconductor devices ; Threshold voltage ; Wearable technology</subject><ispartof>Physica status solidi. A, Applications and materials science, 2020-10, Vol.217 (19), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3177-2e6c237e76fc4487fef74bc51e39edca7b4683f003216f85eb7cc4aaf6c18ded3</citedby><cites>FETCH-LOGICAL-c3177-2e6c237e76fc4487fef74bc51e39edca7b4683f003216f85eb7cc4aaf6c18ded3</cites><orcidid>0000-0002-6599-745X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.202000097$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.202000097$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Patil, Basanagouda B.</creatorcontrib><creatorcontrib>Takeda, Yasunori</creatorcontrib><creatorcontrib>Do, Thu Trang</creatorcontrib><creatorcontrib>Singh, Amandeep</creatorcontrib><creatorcontrib>Sekine, Tomohito</creatorcontrib><creatorcontrib>Yambem, Soniya D.</creatorcontrib><creatorcontrib>Tokito, Shizuo</creatorcontrib><creatorcontrib>Singh, Samarendra P.</creatorcontrib><creatorcontrib>Pandey, Ajay K.</creatorcontrib><creatorcontrib>Sonar, Prashant</creatorcontrib><title>Reduced Threshold Voltages and Enhanced Mobilities in Diketopyrrolopyrrole–Dithienothiophene Polymer‐Based Organic Transistor by Interface Engineering</title><title>Physica status solidi. A, Applications and materials science</title><description>Flexible and low‐power consuming integrated circuits are some of the basic requirements for smart wearable devices. High mobility solution‐processed organic field‐effect transistors (OFETs) have the potential to make a big impact in printed electronic circuits, but their overall performance is currently limited by unusually high threshold voltages (Vth). Herein, systematic optimization of donor–acceptor conjugated polymer, based on dithienothiophene (DTT) and thiophene‐flanked diketopyrrolopyrrole (DPP), namely, PDPPT–DTT, OFETs by application of self‐assembled monolayers (SAMs) at the semiconductor–dielectric, and semiconductor–metal interfaces is reported. The results clearly exhibit that simultaneous application of octyltrichlorosilane (OTS) as semiconductor–dielectric interface modifying layer and pentafluorobenzene thiol (PFBT) as semiconductor–metal interface modifying layer results in significantly lower Vth and subthreshold slope values from −14.07 V and 13.26 (V Dec−1) to +1.06 V and 7.11 (V Dec−1), respectively. This tailored approach is also beneficial in enhancing hole mobility values by an order of magnitude from 0.01 to 0.5 cm2 V−1 s−1 along with the possibility of switching from hole accumulation mode (Vth = −3.75 V) to depletion mode (Vth = +1.06 V) through device engineering. Simultaneous interface engineering reveals OFET electronic properties can be fine‐tuned for robust circuits and low power electronic applications.
For printed electronics to reach its full potential solution processed and bandgap tunable organic materials showcasing high performance are crucial. Herein, systematic optimization of high mobility field effect transistors with judicious interface engineering to reduce threshold voltage for robust operation is presented. Effective SAM treatment offers simultaneous control over maintaining high mobility and low threshold voltage.</description><subject>Circuits</subject><subject>Depletion</subject><subject>donor–acceptor polymers</subject><subject>Electronic circuits</subject><subject>Field effect transistors</subject><subject>field-effect mobility</subject><subject>Hole mobility</subject><subject>hysteresis</subject><subject>Integrated circuits</subject><subject>Interfaces</subject><subject>Optimization</subject><subject>organic thin-film transistors</subject><subject>Polymers</subject><subject>Power consumption</subject><subject>Power management</subject><subject>self-assembled monolayers</subject><subject>Semiconductor devices</subject><subject>Threshold voltage</subject><subject>Wearable technology</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFUL1OwzAQjhBIQGFltsTcYjtOnIz8U6moiBbWyHHOiSHYwU6FsvURkNh4vD4JqVrByA13p7vvR_qC4ITgEcGYnjXeixHFFPeV8p3ggCQxHcYhSXd_d4z3g0PvXzBmEePkIPh-hGIhoUDzyoGvbF2gZ1u3ogSPhCnQtamEWf_vba5r3er-rg260q_Q2qZzztbbAavl15VuKw3G9t02FRhAD7bu3sCtlp8XwvcyU1cKoyWaO2G89q11KO_Q2LTglJDQ-5XaADhtyqNgT4naw_F2DoKnm-v55d1wMr0dX55PhjIknA8pxJKGHHisJGMJV6A4y2VEIEyhkILnLE5ChXFISaySCHIuJRNCxZIkBRThIDjd6DbOvi_At9mLXTjTW2aUsTTBYRTRHjXaoKSz3jtQWeP0m3BdRnC2zj9b55_95t8T0g3hQ9fQ_YPOHmaz8z_uD4tbkPI</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Patil, Basanagouda B.</creator><creator>Takeda, Yasunori</creator><creator>Do, Thu Trang</creator><creator>Singh, Amandeep</creator><creator>Sekine, Tomohito</creator><creator>Yambem, Soniya D.</creator><creator>Tokito, Shizuo</creator><creator>Singh, Samarendra P.</creator><creator>Pandey, Ajay K.</creator><creator>Sonar, Prashant</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6599-745X</orcidid></search><sort><creationdate>202010</creationdate><title>Reduced Threshold Voltages and Enhanced Mobilities in Diketopyrrolopyrrole–Dithienothiophene Polymer‐Based Organic Transistor by Interface Engineering</title><author>Patil, Basanagouda B. ; Takeda, Yasunori ; Do, Thu Trang ; Singh, Amandeep ; Sekine, Tomohito ; Yambem, Soniya D. ; Tokito, Shizuo ; Singh, Samarendra P. ; Pandey, Ajay K. ; Sonar, Prashant</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3177-2e6c237e76fc4487fef74bc51e39edca7b4683f003216f85eb7cc4aaf6c18ded3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Circuits</topic><topic>Depletion</topic><topic>donor–acceptor polymers</topic><topic>Electronic circuits</topic><topic>Field effect transistors</topic><topic>field-effect mobility</topic><topic>Hole mobility</topic><topic>hysteresis</topic><topic>Integrated circuits</topic><topic>Interfaces</topic><topic>Optimization</topic><topic>organic thin-film transistors</topic><topic>Polymers</topic><topic>Power consumption</topic><topic>Power management</topic><topic>self-assembled monolayers</topic><topic>Semiconductor devices</topic><topic>Threshold voltage</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patil, Basanagouda B.</creatorcontrib><creatorcontrib>Takeda, Yasunori</creatorcontrib><creatorcontrib>Do, Thu Trang</creatorcontrib><creatorcontrib>Singh, Amandeep</creatorcontrib><creatorcontrib>Sekine, Tomohito</creatorcontrib><creatorcontrib>Yambem, Soniya D.</creatorcontrib><creatorcontrib>Tokito, Shizuo</creatorcontrib><creatorcontrib>Singh, Samarendra P.</creatorcontrib><creatorcontrib>Pandey, Ajay K.</creatorcontrib><creatorcontrib>Sonar, Prashant</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patil, Basanagouda B.</au><au>Takeda, Yasunori</au><au>Do, Thu Trang</au><au>Singh, Amandeep</au><au>Sekine, Tomohito</au><au>Yambem, Soniya D.</au><au>Tokito, Shizuo</au><au>Singh, Samarendra P.</au><au>Pandey, Ajay K.</au><au>Sonar, Prashant</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduced Threshold Voltages and Enhanced Mobilities in Diketopyrrolopyrrole–Dithienothiophene Polymer‐Based Organic Transistor by Interface Engineering</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2020-10</date><risdate>2020</risdate><volume>217</volume><issue>19</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Flexible and low‐power consuming integrated circuits are some of the basic requirements for smart wearable devices. High mobility solution‐processed organic field‐effect transistors (OFETs) have the potential to make a big impact in printed electronic circuits, but their overall performance is currently limited by unusually high threshold voltages (Vth). Herein, systematic optimization of donor–acceptor conjugated polymer, based on dithienothiophene (DTT) and thiophene‐flanked diketopyrrolopyrrole (DPP), namely, PDPPT–DTT, OFETs by application of self‐assembled monolayers (SAMs) at the semiconductor–dielectric, and semiconductor–metal interfaces is reported. The results clearly exhibit that simultaneous application of octyltrichlorosilane (OTS) as semiconductor–dielectric interface modifying layer and pentafluorobenzene thiol (PFBT) as semiconductor–metal interface modifying layer results in significantly lower Vth and subthreshold slope values from −14.07 V and 13.26 (V Dec−1) to +1.06 V and 7.11 (V Dec−1), respectively. This tailored approach is also beneficial in enhancing hole mobility values by an order of magnitude from 0.01 to 0.5 cm2 V−1 s−1 along with the possibility of switching from hole accumulation mode (Vth = −3.75 V) to depletion mode (Vth = +1.06 V) through device engineering. Simultaneous interface engineering reveals OFET electronic properties can be fine‐tuned for robust circuits and low power electronic applications.
For printed electronics to reach its full potential solution processed and bandgap tunable organic materials showcasing high performance are crucial. Herein, systematic optimization of high mobility field effect transistors with judicious interface engineering to reduce threshold voltage for robust operation is presented. Effective SAM treatment offers simultaneous control over maintaining high mobility and low threshold voltage.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.202000097</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6599-745X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6300 |
ispartof | Physica status solidi. A, Applications and materials science, 2020-10, Vol.217 (19), p.n/a |
issn | 1862-6300 1862-6319 |
language | eng |
recordid | cdi_proquest_journals_2449803552 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Circuits Depletion donor–acceptor polymers Electronic circuits Field effect transistors field-effect mobility Hole mobility hysteresis Integrated circuits Interfaces Optimization organic thin-film transistors Polymers Power consumption Power management self-assembled monolayers Semiconductor devices Threshold voltage Wearable technology |
title | Reduced Threshold Voltages and Enhanced Mobilities in Diketopyrrolopyrrole–Dithienothiophene Polymer‐Based Organic Transistor by Interface Engineering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T08%3A23%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduced%20Threshold%20Voltages%20and%20Enhanced%20Mobilities%20in%20Diketopyrrolopyrrole%E2%80%93Dithienothiophene%20Polymer%E2%80%90Based%20Organic%20Transistor%20by%20Interface%20Engineering&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Patil,%20Basanagouda%20B.&rft.date=2020-10&rft.volume=217&rft.issue=19&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.202000097&rft_dat=%3Cproquest_cross%3E2449803552%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449803552&rft_id=info:pmid/&rfr_iscdi=true |