Reduced Threshold Voltages and Enhanced Mobilities in Diketopyrrolopyrrole–Dithienothiophene Polymer‐Based Organic Transistor by Interface Engineering

Flexible and low‐power consuming integrated circuits are some of the basic requirements for smart wearable devices. High mobility solution‐processed organic field‐effect transistors (OFETs) have the potential to make a big impact in printed electronic circuits, but their overall performance is curre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2020-10, Vol.217 (19), p.n/a
Hauptverfasser: Patil, Basanagouda B., Takeda, Yasunori, Do, Thu Trang, Singh, Amandeep, Sekine, Tomohito, Yambem, Soniya D., Tokito, Shizuo, Singh, Samarendra P., Pandey, Ajay K., Sonar, Prashant
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 19
container_start_page
container_title Physica status solidi. A, Applications and materials science
container_volume 217
creator Patil, Basanagouda B.
Takeda, Yasunori
Do, Thu Trang
Singh, Amandeep
Sekine, Tomohito
Yambem, Soniya D.
Tokito, Shizuo
Singh, Samarendra P.
Pandey, Ajay K.
Sonar, Prashant
description Flexible and low‐power consuming integrated circuits are some of the basic requirements for smart wearable devices. High mobility solution‐processed organic field‐effect transistors (OFETs) have the potential to make a big impact in printed electronic circuits, but their overall performance is currently limited by unusually high threshold voltages (Vth). Herein, systematic optimization of donor–acceptor conjugated polymer, based on dithienothiophene (DTT) and thiophene‐flanked diketopyrrolopyrrole (DPP), namely, PDPPT–DTT, OFETs by application of self‐assembled monolayers (SAMs) at the semiconductor–dielectric, and semiconductor–metal interfaces is reported. The results clearly exhibit that simultaneous application of octyltrichlorosilane (OTS) as semiconductor–dielectric interface modifying layer and pentafluorobenzene thiol (PFBT) as semiconductor–metal interface modifying layer results in significantly lower Vth and subthreshold slope values from −14.07 V and 13.26 (V Dec−1) to +1.06 V and 7.11 (V Dec−1), respectively. This tailored approach is also beneficial in enhancing hole mobility values by an order of magnitude from 0.01 to 0.5 cm2 V−1 s−1 along with the possibility of switching from hole accumulation mode (Vth = −3.75 V) to depletion mode (Vth = +1.06 V) through device engineering. Simultaneous interface engineering reveals OFET electronic properties can be fine‐tuned for robust circuits and low power electronic applications. For printed electronics to reach its full potential solution processed and bandgap tunable organic materials showcasing high performance are crucial. Herein, systematic optimization of high mobility field effect transistors with judicious interface engineering to reduce threshold voltage for robust operation is presented. Effective SAM treatment offers simultaneous control over maintaining high mobility and low threshold voltage.
doi_str_mv 10.1002/pssa.202000097
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2449803552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2449803552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3177-2e6c237e76fc4487fef74bc51e39edca7b4683f003216f85eb7cc4aaf6c18ded3</originalsourceid><addsrcrecordid>eNqFUL1OwzAQjhBIQGFltsTcYjtOnIz8U6moiBbWyHHOiSHYwU6FsvURkNh4vD4JqVrByA13p7vvR_qC4ITgEcGYnjXeixHFFPeV8p3ggCQxHcYhSXd_d4z3g0PvXzBmEePkIPh-hGIhoUDzyoGvbF2gZ1u3ogSPhCnQtamEWf_vba5r3er-rg260q_Q2qZzztbbAavl15VuKw3G9t02FRhAD7bu3sCtlp8XwvcyU1cKoyWaO2G89q11KO_Q2LTglJDQ-5XaADhtyqNgT4naw_F2DoKnm-v55d1wMr0dX55PhjIknA8pxJKGHHisJGMJV6A4y2VEIEyhkILnLE5ChXFISaySCHIuJRNCxZIkBRThIDjd6DbOvi_At9mLXTjTW2aUsTTBYRTRHjXaoKSz3jtQWeP0m3BdRnC2zj9b55_95t8T0g3hQ9fQ_YPOHmaz8z_uD4tbkPI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449803552</pqid></control><display><type>article</type><title>Reduced Threshold Voltages and Enhanced Mobilities in Diketopyrrolopyrrole–Dithienothiophene Polymer‐Based Organic Transistor by Interface Engineering</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Patil, Basanagouda B. ; Takeda, Yasunori ; Do, Thu Trang ; Singh, Amandeep ; Sekine, Tomohito ; Yambem, Soniya D. ; Tokito, Shizuo ; Singh, Samarendra P. ; Pandey, Ajay K. ; Sonar, Prashant</creator><creatorcontrib>Patil, Basanagouda B. ; Takeda, Yasunori ; Do, Thu Trang ; Singh, Amandeep ; Sekine, Tomohito ; Yambem, Soniya D. ; Tokito, Shizuo ; Singh, Samarendra P. ; Pandey, Ajay K. ; Sonar, Prashant</creatorcontrib><description>Flexible and low‐power consuming integrated circuits are some of the basic requirements for smart wearable devices. High mobility solution‐processed organic field‐effect transistors (OFETs) have the potential to make a big impact in printed electronic circuits, but their overall performance is currently limited by unusually high threshold voltages (Vth). Herein, systematic optimization of donor–acceptor conjugated polymer, based on dithienothiophene (DTT) and thiophene‐flanked diketopyrrolopyrrole (DPP), namely, PDPPT–DTT, OFETs by application of self‐assembled monolayers (SAMs) at the semiconductor–dielectric, and semiconductor–metal interfaces is reported. The results clearly exhibit that simultaneous application of octyltrichlorosilane (OTS) as semiconductor–dielectric interface modifying layer and pentafluorobenzene thiol (PFBT) as semiconductor–metal interface modifying layer results in significantly lower Vth and subthreshold slope values from −14.07 V and 13.26 (V Dec−1) to +1.06 V and 7.11 (V Dec−1), respectively. This tailored approach is also beneficial in enhancing hole mobility values by an order of magnitude from 0.01 to 0.5 cm2 V−1 s−1 along with the possibility of switching from hole accumulation mode (Vth = −3.75 V) to depletion mode (Vth = +1.06 V) through device engineering. Simultaneous interface engineering reveals OFET electronic properties can be fine‐tuned for robust circuits and low power electronic applications. For printed electronics to reach its full potential solution processed and bandgap tunable organic materials showcasing high performance are crucial. Herein, systematic optimization of high mobility field effect transistors with judicious interface engineering to reduce threshold voltage for robust operation is presented. Effective SAM treatment offers simultaneous control over maintaining high mobility and low threshold voltage.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.202000097</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Circuits ; Depletion ; donor–acceptor polymers ; Electronic circuits ; Field effect transistors ; field-effect mobility ; Hole mobility ; hysteresis ; Integrated circuits ; Interfaces ; Optimization ; organic thin-film transistors ; Polymers ; Power consumption ; Power management ; self-assembled monolayers ; Semiconductor devices ; Threshold voltage ; Wearable technology</subject><ispartof>Physica status solidi. A, Applications and materials science, 2020-10, Vol.217 (19), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3177-2e6c237e76fc4487fef74bc51e39edca7b4683f003216f85eb7cc4aaf6c18ded3</citedby><cites>FETCH-LOGICAL-c3177-2e6c237e76fc4487fef74bc51e39edca7b4683f003216f85eb7cc4aaf6c18ded3</cites><orcidid>0000-0002-6599-745X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.202000097$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.202000097$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Patil, Basanagouda B.</creatorcontrib><creatorcontrib>Takeda, Yasunori</creatorcontrib><creatorcontrib>Do, Thu Trang</creatorcontrib><creatorcontrib>Singh, Amandeep</creatorcontrib><creatorcontrib>Sekine, Tomohito</creatorcontrib><creatorcontrib>Yambem, Soniya D.</creatorcontrib><creatorcontrib>Tokito, Shizuo</creatorcontrib><creatorcontrib>Singh, Samarendra P.</creatorcontrib><creatorcontrib>Pandey, Ajay K.</creatorcontrib><creatorcontrib>Sonar, Prashant</creatorcontrib><title>Reduced Threshold Voltages and Enhanced Mobilities in Diketopyrrolopyrrole–Dithienothiophene Polymer‐Based Organic Transistor by Interface Engineering</title><title>Physica status solidi. A, Applications and materials science</title><description>Flexible and low‐power consuming integrated circuits are some of the basic requirements for smart wearable devices. High mobility solution‐processed organic field‐effect transistors (OFETs) have the potential to make a big impact in printed electronic circuits, but their overall performance is currently limited by unusually high threshold voltages (Vth). Herein, systematic optimization of donor–acceptor conjugated polymer, based on dithienothiophene (DTT) and thiophene‐flanked diketopyrrolopyrrole (DPP), namely, PDPPT–DTT, OFETs by application of self‐assembled monolayers (SAMs) at the semiconductor–dielectric, and semiconductor–metal interfaces is reported. The results clearly exhibit that simultaneous application of octyltrichlorosilane (OTS) as semiconductor–dielectric interface modifying layer and pentafluorobenzene thiol (PFBT) as semiconductor–metal interface modifying layer results in significantly lower Vth and subthreshold slope values from −14.07 V and 13.26 (V Dec−1) to +1.06 V and 7.11 (V Dec−1), respectively. This tailored approach is also beneficial in enhancing hole mobility values by an order of magnitude from 0.01 to 0.5 cm2 V−1 s−1 along with the possibility of switching from hole accumulation mode (Vth = −3.75 V) to depletion mode (Vth = +1.06 V) through device engineering. Simultaneous interface engineering reveals OFET electronic properties can be fine‐tuned for robust circuits and low power electronic applications. For printed electronics to reach its full potential solution processed and bandgap tunable organic materials showcasing high performance are crucial. Herein, systematic optimization of high mobility field effect transistors with judicious interface engineering to reduce threshold voltage for robust operation is presented. Effective SAM treatment offers simultaneous control over maintaining high mobility and low threshold voltage.</description><subject>Circuits</subject><subject>Depletion</subject><subject>donor–acceptor polymers</subject><subject>Electronic circuits</subject><subject>Field effect transistors</subject><subject>field-effect mobility</subject><subject>Hole mobility</subject><subject>hysteresis</subject><subject>Integrated circuits</subject><subject>Interfaces</subject><subject>Optimization</subject><subject>organic thin-film transistors</subject><subject>Polymers</subject><subject>Power consumption</subject><subject>Power management</subject><subject>self-assembled monolayers</subject><subject>Semiconductor devices</subject><subject>Threshold voltage</subject><subject>Wearable technology</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFUL1OwzAQjhBIQGFltsTcYjtOnIz8U6moiBbWyHHOiSHYwU6FsvURkNh4vD4JqVrByA13p7vvR_qC4ITgEcGYnjXeixHFFPeV8p3ggCQxHcYhSXd_d4z3g0PvXzBmEePkIPh-hGIhoUDzyoGvbF2gZ1u3ogSPhCnQtamEWf_vba5r3er-rg260q_Q2qZzztbbAavl15VuKw3G9t02FRhAD7bu3sCtlp8XwvcyU1cKoyWaO2G89q11KO_Q2LTglJDQ-5XaADhtyqNgT4naw_F2DoKnm-v55d1wMr0dX55PhjIknA8pxJKGHHisJGMJV6A4y2VEIEyhkILnLE5ChXFISaySCHIuJRNCxZIkBRThIDjd6DbOvi_At9mLXTjTW2aUsTTBYRTRHjXaoKSz3jtQWeP0m3BdRnC2zj9b55_95t8T0g3hQ9fQ_YPOHmaz8z_uD4tbkPI</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Patil, Basanagouda B.</creator><creator>Takeda, Yasunori</creator><creator>Do, Thu Trang</creator><creator>Singh, Amandeep</creator><creator>Sekine, Tomohito</creator><creator>Yambem, Soniya D.</creator><creator>Tokito, Shizuo</creator><creator>Singh, Samarendra P.</creator><creator>Pandey, Ajay K.</creator><creator>Sonar, Prashant</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6599-745X</orcidid></search><sort><creationdate>202010</creationdate><title>Reduced Threshold Voltages and Enhanced Mobilities in Diketopyrrolopyrrole–Dithienothiophene Polymer‐Based Organic Transistor by Interface Engineering</title><author>Patil, Basanagouda B. ; Takeda, Yasunori ; Do, Thu Trang ; Singh, Amandeep ; Sekine, Tomohito ; Yambem, Soniya D. ; Tokito, Shizuo ; Singh, Samarendra P. ; Pandey, Ajay K. ; Sonar, Prashant</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3177-2e6c237e76fc4487fef74bc51e39edca7b4683f003216f85eb7cc4aaf6c18ded3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Circuits</topic><topic>Depletion</topic><topic>donor–acceptor polymers</topic><topic>Electronic circuits</topic><topic>Field effect transistors</topic><topic>field-effect mobility</topic><topic>Hole mobility</topic><topic>hysteresis</topic><topic>Integrated circuits</topic><topic>Interfaces</topic><topic>Optimization</topic><topic>organic thin-film transistors</topic><topic>Polymers</topic><topic>Power consumption</topic><topic>Power management</topic><topic>self-assembled monolayers</topic><topic>Semiconductor devices</topic><topic>Threshold voltage</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patil, Basanagouda B.</creatorcontrib><creatorcontrib>Takeda, Yasunori</creatorcontrib><creatorcontrib>Do, Thu Trang</creatorcontrib><creatorcontrib>Singh, Amandeep</creatorcontrib><creatorcontrib>Sekine, Tomohito</creatorcontrib><creatorcontrib>Yambem, Soniya D.</creatorcontrib><creatorcontrib>Tokito, Shizuo</creatorcontrib><creatorcontrib>Singh, Samarendra P.</creatorcontrib><creatorcontrib>Pandey, Ajay K.</creatorcontrib><creatorcontrib>Sonar, Prashant</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patil, Basanagouda B.</au><au>Takeda, Yasunori</au><au>Do, Thu Trang</au><au>Singh, Amandeep</au><au>Sekine, Tomohito</au><au>Yambem, Soniya D.</au><au>Tokito, Shizuo</au><au>Singh, Samarendra P.</au><au>Pandey, Ajay K.</au><au>Sonar, Prashant</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduced Threshold Voltages and Enhanced Mobilities in Diketopyrrolopyrrole–Dithienothiophene Polymer‐Based Organic Transistor by Interface Engineering</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2020-10</date><risdate>2020</risdate><volume>217</volume><issue>19</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Flexible and low‐power consuming integrated circuits are some of the basic requirements for smart wearable devices. High mobility solution‐processed organic field‐effect transistors (OFETs) have the potential to make a big impact in printed electronic circuits, but their overall performance is currently limited by unusually high threshold voltages (Vth). Herein, systematic optimization of donor–acceptor conjugated polymer, based on dithienothiophene (DTT) and thiophene‐flanked diketopyrrolopyrrole (DPP), namely, PDPPT–DTT, OFETs by application of self‐assembled monolayers (SAMs) at the semiconductor–dielectric, and semiconductor–metal interfaces is reported. The results clearly exhibit that simultaneous application of octyltrichlorosilane (OTS) as semiconductor–dielectric interface modifying layer and pentafluorobenzene thiol (PFBT) as semiconductor–metal interface modifying layer results in significantly lower Vth and subthreshold slope values from −14.07 V and 13.26 (V Dec−1) to +1.06 V and 7.11 (V Dec−1), respectively. This tailored approach is also beneficial in enhancing hole mobility values by an order of magnitude from 0.01 to 0.5 cm2 V−1 s−1 along with the possibility of switching from hole accumulation mode (Vth = −3.75 V) to depletion mode (Vth = +1.06 V) through device engineering. Simultaneous interface engineering reveals OFET electronic properties can be fine‐tuned for robust circuits and low power electronic applications. For printed electronics to reach its full potential solution processed and bandgap tunable organic materials showcasing high performance are crucial. Herein, systematic optimization of high mobility field effect transistors with judicious interface engineering to reduce threshold voltage for robust operation is presented. Effective SAM treatment offers simultaneous control over maintaining high mobility and low threshold voltage.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.202000097</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6599-745X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2020-10, Vol.217 (19), p.n/a
issn 1862-6300
1862-6319
language eng
recordid cdi_proquest_journals_2449803552
source Wiley Online Library - AutoHoldings Journals
subjects Circuits
Depletion
donor–acceptor polymers
Electronic circuits
Field effect transistors
field-effect mobility
Hole mobility
hysteresis
Integrated circuits
Interfaces
Optimization
organic thin-film transistors
Polymers
Power consumption
Power management
self-assembled monolayers
Semiconductor devices
Threshold voltage
Wearable technology
title Reduced Threshold Voltages and Enhanced Mobilities in Diketopyrrolopyrrole–Dithienothiophene Polymer‐Based Organic Transistor by Interface Engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T08%3A23%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduced%20Threshold%20Voltages%20and%20Enhanced%20Mobilities%20in%20Diketopyrrolopyrrole%E2%80%93Dithienothiophene%20Polymer%E2%80%90Based%20Organic%20Transistor%20by%20Interface%20Engineering&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Patil,%20Basanagouda%20B.&rft.date=2020-10&rft.volume=217&rft.issue=19&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.202000097&rft_dat=%3Cproquest_cross%3E2449803552%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449803552&rft_id=info:pmid/&rfr_iscdi=true