A strictly commutative model for the cochain algebra of a space
The commutative differential graded algebra $A_{\mathrm {PL}}(X)$ of polynomial forms on a simplicial set $X$ is a crucial tool in rational homotopy theory. In this note, we construct an integral version $A^{\mathcal {I}}(X)$ of $A_{\mathrm {PL}}(X)$. Our approach uses diagrams of chain complexes in...
Gespeichert in:
Veröffentlicht in: | Compositio mathematica 2020-08, Vol.156 (8), p.1718-1743 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1743 |
---|---|
container_issue | 8 |
container_start_page | 1718 |
container_title | Compositio mathematica |
container_volume | 156 |
creator | Richter, Birgit Sagave, Steffen |
description | The commutative differential graded algebra $A_{\mathrm {PL}}(X)$ of polynomial forms on a simplicial set $X$ is a crucial tool in rational homotopy theory. In this note, we construct an integral version $A^{\mathcal {I}}(X)$ of $A_{\mathrm {PL}}(X)$. Our approach uses diagrams of chain complexes indexed by the category of finite sets and injections $\mathcal {I}$ to model $E_{\infty }$ differential graded algebras (dga) by strictly commutative objects, called commutative $\mathcal {I}$-dgas. We define a functor $A^{\mathcal {I}}$ from simplicial sets to commutative $\mathcal {I}$-dgas and show that it is a commutative lift of the usual cochain algebra functor. In particular, it gives rise to a new construction of the $E_{\infty }$ dga of cochains. The functor $A^{\mathcal {I}}$ shares many properties of $A_{\mathrm {PL}}$, and can be viewed as a generalization of $A_{\mathrm {PL}}$ that works over arbitrary commutative ground rings. Working over the integers, a theorem by Mandell implies that $A^{\mathcal {I}}(X)$ determines the homotopy type of $X$ when $X$ is a nilpotent space of finite type. |
doi_str_mv | 10.1112/S0010437X20007319 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2449779271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1112_S0010437X20007319</cupid><sourcerecordid>2449779271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-df0d92fad8502831161a7102c2ba73946bb9b67a18b5bde0da50f44db2fb75693</originalsourceid><addsrcrecordid>eNp1kE1LAzEYhIMoWKs_wFvA82reJLvZnKQUv6DgQQVvSz7bLbtNTbJC_71bWvAgnuYw88zAIHQN5BYA6N0bIUA4E5-UECIYyBM0gVKQoqx5dYome7vY--foIqX1GKI1rSfofoZTjq3J3Q6b0PdDVrn9drgP1nXYh4jzyo2OWal2g1W3dDoqHDxWOG2VcZfozKsuuaujTtHH48P7_LlYvD69zGeLwrCK5MJ6YiX1ytblOMwAKlACCDVUK8Ekr7SWuhIKal1q64hVJfGcW029FmUl2RTdHHq3MXwNLuVmHYa4GScbyrkUQlIBYwoOKRNDStH5ZhvbXsVdA6TZ_9T8-Wlk2JFRvY6tXbrf6v-pHx5iaNE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449779271</pqid></control><display><type>article</type><title>A strictly commutative model for the cochain algebra of a space</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Cambridge University Press Journals Complete</source><creator>Richter, Birgit ; Sagave, Steffen</creator><creatorcontrib>Richter, Birgit ; Sagave, Steffen</creatorcontrib><description>The commutative differential graded algebra $A_{\mathrm {PL}}(X)$ of polynomial forms on a simplicial set $X$ is a crucial tool in rational homotopy theory. In this note, we construct an integral version $A^{\mathcal {I}}(X)$ of $A_{\mathrm {PL}}(X)$. Our approach uses diagrams of chain complexes indexed by the category of finite sets and injections $\mathcal {I}$ to model $E_{\infty }$ differential graded algebras (dga) by strictly commutative objects, called commutative $\mathcal {I}$-dgas. We define a functor $A^{\mathcal {I}}$ from simplicial sets to commutative $\mathcal {I}$-dgas and show that it is a commutative lift of the usual cochain algebra functor. In particular, it gives rise to a new construction of the $E_{\infty }$ dga of cochains. The functor $A^{\mathcal {I}}$ shares many properties of $A_{\mathrm {PL}}$, and can be viewed as a generalization of $A_{\mathrm {PL}}$ that works over arbitrary commutative ground rings. Working over the integers, a theorem by Mandell implies that $A^{\mathcal {I}}(X)$ determines the homotopy type of $X$ when $X$ is a nilpotent space of finite type.</description><identifier>ISSN: 0010-437X</identifier><identifier>EISSN: 1570-5846</identifier><identifier>DOI: 10.1112/S0010437X20007319</identifier><language>eng</language><publisher>London, UK: London Mathematical Society</publisher><subject>Algebra ; Homotopy theory ; Polynomials ; Rings (mathematics)</subject><ispartof>Compositio mathematica, 2020-08, Vol.156 (8), p.1718-1743</ispartof><rights>Copyright © Foundation Compositio Mathematica 2020</rights><rights>2020 This article is published under (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-df0d92fad8502831161a7102c2ba73946bb9b67a18b5bde0da50f44db2fb75693</citedby><cites>FETCH-LOGICAL-c360t-df0d92fad8502831161a7102c2ba73946bb9b67a18b5bde0da50f44db2fb75693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0010437X20007319/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Richter, Birgit</creatorcontrib><creatorcontrib>Sagave, Steffen</creatorcontrib><title>A strictly commutative model for the cochain algebra of a space</title><title>Compositio mathematica</title><addtitle>Compositio Math</addtitle><description>The commutative differential graded algebra $A_{\mathrm {PL}}(X)$ of polynomial forms on a simplicial set $X$ is a crucial tool in rational homotopy theory. In this note, we construct an integral version $A^{\mathcal {I}}(X)$ of $A_{\mathrm {PL}}(X)$. Our approach uses diagrams of chain complexes indexed by the category of finite sets and injections $\mathcal {I}$ to model $E_{\infty }$ differential graded algebras (dga) by strictly commutative objects, called commutative $\mathcal {I}$-dgas. We define a functor $A^{\mathcal {I}}$ from simplicial sets to commutative $\mathcal {I}$-dgas and show that it is a commutative lift of the usual cochain algebra functor. In particular, it gives rise to a new construction of the $E_{\infty }$ dga of cochains. The functor $A^{\mathcal {I}}$ shares many properties of $A_{\mathrm {PL}}$, and can be viewed as a generalization of $A_{\mathrm {PL}}$ that works over arbitrary commutative ground rings. Working over the integers, a theorem by Mandell implies that $A^{\mathcal {I}}(X)$ determines the homotopy type of $X$ when $X$ is a nilpotent space of finite type.</description><subject>Algebra</subject><subject>Homotopy theory</subject><subject>Polynomials</subject><subject>Rings (mathematics)</subject><issn>0010-437X</issn><issn>1570-5846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LAzEYhIMoWKs_wFvA82reJLvZnKQUv6DgQQVvSz7bLbtNTbJC_71bWvAgnuYw88zAIHQN5BYA6N0bIUA4E5-UECIYyBM0gVKQoqx5dYome7vY--foIqX1GKI1rSfofoZTjq3J3Q6b0PdDVrn9drgP1nXYh4jzyo2OWal2g1W3dDoqHDxWOG2VcZfozKsuuaujTtHH48P7_LlYvD69zGeLwrCK5MJ6YiX1ytblOMwAKlACCDVUK8Ekr7SWuhIKal1q64hVJfGcW029FmUl2RTdHHq3MXwNLuVmHYa4GScbyrkUQlIBYwoOKRNDStH5ZhvbXsVdA6TZ_9T8-Wlk2JFRvY6tXbrf6v-pHx5iaNE</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Richter, Birgit</creator><creator>Sagave, Steffen</creator><general>London Mathematical Society</general><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20200801</creationdate><title>A strictly commutative model for the cochain algebra of a space</title><author>Richter, Birgit ; Sagave, Steffen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-df0d92fad8502831161a7102c2ba73946bb9b67a18b5bde0da50f44db2fb75693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Homotopy theory</topic><topic>Polynomials</topic><topic>Rings (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richter, Birgit</creatorcontrib><creatorcontrib>Sagave, Steffen</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Compositio mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richter, Birgit</au><au>Sagave, Steffen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A strictly commutative model for the cochain algebra of a space</atitle><jtitle>Compositio mathematica</jtitle><addtitle>Compositio Math</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>156</volume><issue>8</issue><spage>1718</spage><epage>1743</epage><pages>1718-1743</pages><issn>0010-437X</issn><eissn>1570-5846</eissn><abstract>The commutative differential graded algebra $A_{\mathrm {PL}}(X)$ of polynomial forms on a simplicial set $X$ is a crucial tool in rational homotopy theory. In this note, we construct an integral version $A^{\mathcal {I}}(X)$ of $A_{\mathrm {PL}}(X)$. Our approach uses diagrams of chain complexes indexed by the category of finite sets and injections $\mathcal {I}$ to model $E_{\infty }$ differential graded algebras (dga) by strictly commutative objects, called commutative $\mathcal {I}$-dgas. We define a functor $A^{\mathcal {I}}$ from simplicial sets to commutative $\mathcal {I}$-dgas and show that it is a commutative lift of the usual cochain algebra functor. In particular, it gives rise to a new construction of the $E_{\infty }$ dga of cochains. The functor $A^{\mathcal {I}}$ shares many properties of $A_{\mathrm {PL}}$, and can be viewed as a generalization of $A_{\mathrm {PL}}$ that works over arbitrary commutative ground rings. Working over the integers, a theorem by Mandell implies that $A^{\mathcal {I}}(X)$ determines the homotopy type of $X$ when $X$ is a nilpotent space of finite type.</abstract><cop>London, UK</cop><pub>London Mathematical Society</pub><doi>10.1112/S0010437X20007319</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-437X |
ispartof | Compositio mathematica, 2020-08, Vol.156 (8), p.1718-1743 |
issn | 0010-437X 1570-5846 |
language | eng |
recordid | cdi_proquest_journals_2449779271 |
source | EZB-FREE-00999 freely available EZB journals; Cambridge University Press Journals Complete |
subjects | Algebra Homotopy theory Polynomials Rings (mathematics) |
title | A strictly commutative model for the cochain algebra of a space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T15%3A07%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20strictly%20commutative%20model%20for%20the%20cochain%20algebra%20of%20a%20space&rft.jtitle=Compositio%20mathematica&rft.au=Richter,%20Birgit&rft.date=2020-08-01&rft.volume=156&rft.issue=8&rft.spage=1718&rft.epage=1743&rft.pages=1718-1743&rft.issn=0010-437X&rft.eissn=1570-5846&rft_id=info:doi/10.1112/S0010437X20007319&rft_dat=%3Cproquest_cross%3E2449779271%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449779271&rft_id=info:pmid/&rft_cupid=10_1112_S0010437X20007319&rfr_iscdi=true |