Design, space optimization and modelling of solar-cum-biomass hybrid greenhouse crop dryer using flue gas heat transfer pipe network
•A hybrid crop dryer is presented.•Thermal model is developed and validated.•Heat transfer model predicts the heating load.•Economic analysis is presented. A solar-cum-biomass hybrid greenhouse crop dryer (HGCD) is presented to work on solar energy and on biomass heat for 24 h continuous operation a...
Gespeichert in:
Veröffentlicht in: | Solar energy 2020-08, Vol.206, p.120-135 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 135 |
---|---|
container_issue | |
container_start_page | 120 |
container_title | Solar energy |
container_volume | 206 |
creator | Sethi, V.P. Dhiman, Mankaran |
description | •A hybrid crop dryer is presented.•Thermal model is developed and validated.•Heat transfer model predicts the heating load.•Economic analysis is presented.
A solar-cum-biomass hybrid greenhouse crop dryer (HGCD) is presented to work on solar energy and on biomass heat for 24 h continuous operation at constant drying temperature of 62 °C. Vertical gap (clearance) between two consecutive trays is optimized for selected latitudes of 30°, 35°, 40°, 45° and 50°N. Global solar radiation and thermal models are developed to predict the solar radiation availability and HGCD chamber air temperature (Thgcd). Forced draft paddy straw bale combustor (FDPSBC) is used to generate flue gas above 500 °C temperature as supplemental heat source and coupled with flue gas heat transfer pipe network (FGHTPN) laid inside the HGCD to maintain Thgcd at constant temperature. Biomass heating load requirements (forced convection and radiation heats) were predicted through developed heat transfer model. The developed thermal model predicted the Thgcd of 26 °C to 38 °C equivalent to heating load of 4–6.5 kW when ambient air temperature remained between 10 °C and 18 °C at Ludhiana climate (30°N) India. Heat transfer model predicted about 26.2 kW and 13.4 kW of supplemental heat during severe and moderate night temperatures of −5 °C and 10 °C which can be met through complete combustion of 80 kg and 40 kg of paddy straw biomass per hour respectively to maintain Thgcd between 60 and 62 °C. Logarithmic drying model is the best fitting drying model for fenugreek drying. Economic analysis shows that the proposed technology can recover its cost within five years and has great adaptability potential in terms of paddy straw management in India. |
doi_str_mv | 10.1016/j.solener.2020.06.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2449483491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038092X20306113</els_id><sourcerecordid>2449483491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-d0ba312d881208797a05f7781e140543b82afc20faf607571233ec6752865f783</originalsourceid><addsrcrecordid>eNqFkE1P3DAQhi1EJRbKT0CyxLUJYzuJvSdUUdoiIfXSStwsrzNevCR2aiettmd-OF4t957m8H5pHkKuGNQMWHezq3McMGCqOXCooasBuhOyYo1kFeOtPCUrAKEqWPOnM3Ke8w6ASabkirx-wey34RPNk7FI4zT70f8zs4-BmtDTMfY4DD5saXS0zJhU2WWsNj6OJmf6vN8k39NtQgzPcclIbYoT7dMeE13yIeeGBenWFC-amc7JhOyKOPkJacD5b0wvH8kHZ4aMl-_3gvz6ev_z7nv1-OPbw93nx8oKIeeqh40RjPdKMQ5KrqWB1kmpGLIG2kZsFDfOcnDGdSBbybgQaDvZctUVoxIX5PrYO6X4e8E8611cUiiTmjfNulGiWbPiao-u8krOCZ2ekh9N2msG-gBc7_Q7cH0ArqHTBXjJ3R5zWF7444uarcdgsfcJ7az76P_T8AawsI3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449483491</pqid></control><display><type>article</type><title>Design, space optimization and modelling of solar-cum-biomass hybrid greenhouse crop dryer using flue gas heat transfer pipe network</title><source>Access via ScienceDirect (Elsevier)</source><creator>Sethi, V.P. ; Dhiman, Mankaran</creator><creatorcontrib>Sethi, V.P. ; Dhiman, Mankaran</creatorcontrib><description>•A hybrid crop dryer is presented.•Thermal model is developed and validated.•Heat transfer model predicts the heating load.•Economic analysis is presented.
A solar-cum-biomass hybrid greenhouse crop dryer (HGCD) is presented to work on solar energy and on biomass heat for 24 h continuous operation at constant drying temperature of 62 °C. Vertical gap (clearance) between two consecutive trays is optimized for selected latitudes of 30°, 35°, 40°, 45° and 50°N. Global solar radiation and thermal models are developed to predict the solar radiation availability and HGCD chamber air temperature (Thgcd). Forced draft paddy straw bale combustor (FDPSBC) is used to generate flue gas above 500 °C temperature as supplemental heat source and coupled with flue gas heat transfer pipe network (FGHTPN) laid inside the HGCD to maintain Thgcd at constant temperature. Biomass heating load requirements (forced convection and radiation heats) were predicted through developed heat transfer model. The developed thermal model predicted the Thgcd of 26 °C to 38 °C equivalent to heating load of 4–6.5 kW when ambient air temperature remained between 10 °C and 18 °C at Ludhiana climate (30°N) India. Heat transfer model predicted about 26.2 kW and 13.4 kW of supplemental heat during severe and moderate night temperatures of −5 °C and 10 °C which can be met through complete combustion of 80 kg and 40 kg of paddy straw biomass per hour respectively to maintain Thgcd between 60 and 62 °C. Logarithmic drying model is the best fitting drying model for fenugreek drying. Economic analysis shows that the proposed technology can recover its cost within five years and has great adaptability potential in terms of paddy straw management in India.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/j.solener.2020.06.006</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Adaptability ; Agricultural economics ; Air temperature ; Biomass ; Biomass burning ; Biomass dryer ; Biomass energy production ; Combustion chambers ; Convection ; Convection heating ; Cost analysis ; Design optimization ; Drying ; Drying model ; Economic analysis ; Economic conditions ; Economic models ; Energy crops ; Fenugreek ; Flue gas ; Forced convection ; Heat transfer ; Heat transfer model ; Heating load ; Hybrid greenhouse dryer ; Pipes ; Solar dryer ; Solar energy ; Solar power ; Solar radiation ; Straw ; Temperature ; Temperature requirements ; Thermal analysis ; Thermal model ; Trays</subject><ispartof>Solar energy, 2020-08, Vol.206, p.120-135</ispartof><rights>2020 International Solar Energy Society</rights><rights>Copyright Pergamon Press Inc. Aug 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-d0ba312d881208797a05f7781e140543b82afc20faf607571233ec6752865f783</citedby><cites>FETCH-LOGICAL-c337t-d0ba312d881208797a05f7781e140543b82afc20faf607571233ec6752865f783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solener.2020.06.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Sethi, V.P.</creatorcontrib><creatorcontrib>Dhiman, Mankaran</creatorcontrib><title>Design, space optimization and modelling of solar-cum-biomass hybrid greenhouse crop dryer using flue gas heat transfer pipe network</title><title>Solar energy</title><description>•A hybrid crop dryer is presented.•Thermal model is developed and validated.•Heat transfer model predicts the heating load.•Economic analysis is presented.
A solar-cum-biomass hybrid greenhouse crop dryer (HGCD) is presented to work on solar energy and on biomass heat for 24 h continuous operation at constant drying temperature of 62 °C. Vertical gap (clearance) between two consecutive trays is optimized for selected latitudes of 30°, 35°, 40°, 45° and 50°N. Global solar radiation and thermal models are developed to predict the solar radiation availability and HGCD chamber air temperature (Thgcd). Forced draft paddy straw bale combustor (FDPSBC) is used to generate flue gas above 500 °C temperature as supplemental heat source and coupled with flue gas heat transfer pipe network (FGHTPN) laid inside the HGCD to maintain Thgcd at constant temperature. Biomass heating load requirements (forced convection and radiation heats) were predicted through developed heat transfer model. The developed thermal model predicted the Thgcd of 26 °C to 38 °C equivalent to heating load of 4–6.5 kW when ambient air temperature remained between 10 °C and 18 °C at Ludhiana climate (30°N) India. Heat transfer model predicted about 26.2 kW and 13.4 kW of supplemental heat during severe and moderate night temperatures of −5 °C and 10 °C which can be met through complete combustion of 80 kg and 40 kg of paddy straw biomass per hour respectively to maintain Thgcd between 60 and 62 °C. Logarithmic drying model is the best fitting drying model for fenugreek drying. Economic analysis shows that the proposed technology can recover its cost within five years and has great adaptability potential in terms of paddy straw management in India.</description><subject>Adaptability</subject><subject>Agricultural economics</subject><subject>Air temperature</subject><subject>Biomass</subject><subject>Biomass burning</subject><subject>Biomass dryer</subject><subject>Biomass energy production</subject><subject>Combustion chambers</subject><subject>Convection</subject><subject>Convection heating</subject><subject>Cost analysis</subject><subject>Design optimization</subject><subject>Drying</subject><subject>Drying model</subject><subject>Economic analysis</subject><subject>Economic conditions</subject><subject>Economic models</subject><subject>Energy crops</subject><subject>Fenugreek</subject><subject>Flue gas</subject><subject>Forced convection</subject><subject>Heat transfer</subject><subject>Heat transfer model</subject><subject>Heating load</subject><subject>Hybrid greenhouse dryer</subject><subject>Pipes</subject><subject>Solar dryer</subject><subject>Solar energy</subject><subject>Solar power</subject><subject>Solar radiation</subject><subject>Straw</subject><subject>Temperature</subject><subject>Temperature requirements</subject><subject>Thermal analysis</subject><subject>Thermal model</subject><subject>Trays</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1P3DAQhi1EJRbKT0CyxLUJYzuJvSdUUdoiIfXSStwsrzNevCR2aiettmd-OF4t957m8H5pHkKuGNQMWHezq3McMGCqOXCooasBuhOyYo1kFeOtPCUrAKEqWPOnM3Ke8w6ASabkirx-wey34RPNk7FI4zT70f8zs4-BmtDTMfY4DD5saXS0zJhU2WWsNj6OJmf6vN8k39NtQgzPcclIbYoT7dMeE13yIeeGBenWFC-amc7JhOyKOPkJacD5b0wvH8kHZ4aMl-_3gvz6ev_z7nv1-OPbw93nx8oKIeeqh40RjPdKMQ5KrqWB1kmpGLIG2kZsFDfOcnDGdSBbybgQaDvZctUVoxIX5PrYO6X4e8E8611cUiiTmjfNulGiWbPiao-u8krOCZ2ekh9N2msG-gBc7_Q7cH0ArqHTBXjJ3R5zWF7444uarcdgsfcJ7az76P_T8AawsI3A</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Sethi, V.P.</creator><creator>Dhiman, Mankaran</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>202008</creationdate><title>Design, space optimization and modelling of solar-cum-biomass hybrid greenhouse crop dryer using flue gas heat transfer pipe network</title><author>Sethi, V.P. ; Dhiman, Mankaran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-d0ba312d881208797a05f7781e140543b82afc20faf607571233ec6752865f783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptability</topic><topic>Agricultural economics</topic><topic>Air temperature</topic><topic>Biomass</topic><topic>Biomass burning</topic><topic>Biomass dryer</topic><topic>Biomass energy production</topic><topic>Combustion chambers</topic><topic>Convection</topic><topic>Convection heating</topic><topic>Cost analysis</topic><topic>Design optimization</topic><topic>Drying</topic><topic>Drying model</topic><topic>Economic analysis</topic><topic>Economic conditions</topic><topic>Economic models</topic><topic>Energy crops</topic><topic>Fenugreek</topic><topic>Flue gas</topic><topic>Forced convection</topic><topic>Heat transfer</topic><topic>Heat transfer model</topic><topic>Heating load</topic><topic>Hybrid greenhouse dryer</topic><topic>Pipes</topic><topic>Solar dryer</topic><topic>Solar energy</topic><topic>Solar power</topic><topic>Solar radiation</topic><topic>Straw</topic><topic>Temperature</topic><topic>Temperature requirements</topic><topic>Thermal analysis</topic><topic>Thermal model</topic><topic>Trays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sethi, V.P.</creatorcontrib><creatorcontrib>Dhiman, Mankaran</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sethi, V.P.</au><au>Dhiman, Mankaran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design, space optimization and modelling of solar-cum-biomass hybrid greenhouse crop dryer using flue gas heat transfer pipe network</atitle><jtitle>Solar energy</jtitle><date>2020-08</date><risdate>2020</risdate><volume>206</volume><spage>120</spage><epage>135</epage><pages>120-135</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><abstract>•A hybrid crop dryer is presented.•Thermal model is developed and validated.•Heat transfer model predicts the heating load.•Economic analysis is presented.
A solar-cum-biomass hybrid greenhouse crop dryer (HGCD) is presented to work on solar energy and on biomass heat for 24 h continuous operation at constant drying temperature of 62 °C. Vertical gap (clearance) between two consecutive trays is optimized for selected latitudes of 30°, 35°, 40°, 45° and 50°N. Global solar radiation and thermal models are developed to predict the solar radiation availability and HGCD chamber air temperature (Thgcd). Forced draft paddy straw bale combustor (FDPSBC) is used to generate flue gas above 500 °C temperature as supplemental heat source and coupled with flue gas heat transfer pipe network (FGHTPN) laid inside the HGCD to maintain Thgcd at constant temperature. Biomass heating load requirements (forced convection and radiation heats) were predicted through developed heat transfer model. The developed thermal model predicted the Thgcd of 26 °C to 38 °C equivalent to heating load of 4–6.5 kW when ambient air temperature remained between 10 °C and 18 °C at Ludhiana climate (30°N) India. Heat transfer model predicted about 26.2 kW and 13.4 kW of supplemental heat during severe and moderate night temperatures of −5 °C and 10 °C which can be met through complete combustion of 80 kg and 40 kg of paddy straw biomass per hour respectively to maintain Thgcd between 60 and 62 °C. Logarithmic drying model is the best fitting drying model for fenugreek drying. Economic analysis shows that the proposed technology can recover its cost within five years and has great adaptability potential in terms of paddy straw management in India.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.solener.2020.06.006</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-092X |
ispartof | Solar energy, 2020-08, Vol.206, p.120-135 |
issn | 0038-092X 1471-1257 |
language | eng |
recordid | cdi_proquest_journals_2449483491 |
source | Access via ScienceDirect (Elsevier) |
subjects | Adaptability Agricultural economics Air temperature Biomass Biomass burning Biomass dryer Biomass energy production Combustion chambers Convection Convection heating Cost analysis Design optimization Drying Drying model Economic analysis Economic conditions Economic models Energy crops Fenugreek Flue gas Forced convection Heat transfer Heat transfer model Heating load Hybrid greenhouse dryer Pipes Solar dryer Solar energy Solar power Solar radiation Straw Temperature Temperature requirements Thermal analysis Thermal model Trays |
title | Design, space optimization and modelling of solar-cum-biomass hybrid greenhouse crop dryer using flue gas heat transfer pipe network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A09%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design,%20space%20optimization%20and%20modelling%20of%20solar-cum-biomass%20hybrid%20greenhouse%20crop%20dryer%20using%20flue%20gas%20heat%20transfer%20pipe%20network&rft.jtitle=Solar%20energy&rft.au=Sethi,%20V.P.&rft.date=2020-08&rft.volume=206&rft.spage=120&rft.epage=135&rft.pages=120-135&rft.issn=0038-092X&rft.eissn=1471-1257&rft_id=info:doi/10.1016/j.solener.2020.06.006&rft_dat=%3Cproquest_cross%3E2449483491%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449483491&rft_id=info:pmid/&rft_els_id=S0038092X20306113&rfr_iscdi=true |