Design, space optimization and modelling of solar-cum-biomass hybrid greenhouse crop dryer using flue gas heat transfer pipe network

•A hybrid crop dryer is presented.•Thermal model is developed and validated.•Heat transfer model predicts the heating load.•Economic analysis is presented. A solar-cum-biomass hybrid greenhouse crop dryer (HGCD) is presented to work on solar energy and on biomass heat for 24 h continuous operation a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy 2020-08, Vol.206, p.120-135
Hauptverfasser: Sethi, V.P., Dhiman, Mankaran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 135
container_issue
container_start_page 120
container_title Solar energy
container_volume 206
creator Sethi, V.P.
Dhiman, Mankaran
description •A hybrid crop dryer is presented.•Thermal model is developed and validated.•Heat transfer model predicts the heating load.•Economic analysis is presented. A solar-cum-biomass hybrid greenhouse crop dryer (HGCD) is presented to work on solar energy and on biomass heat for 24 h continuous operation at constant drying temperature of 62 °C. Vertical gap (clearance) between two consecutive trays is optimized for selected latitudes of 30°, 35°, 40°, 45° and 50°N. Global solar radiation and thermal models are developed to predict the solar radiation availability and HGCD chamber air temperature (Thgcd). Forced draft paddy straw bale combustor (FDPSBC) is used to generate flue gas above 500 °C temperature as supplemental heat source and coupled with flue gas heat transfer pipe network (FGHTPN) laid inside the HGCD to maintain Thgcd at constant temperature. Biomass heating load requirements (forced convection and radiation heats) were predicted through developed heat transfer model. The developed thermal model predicted the Thgcd of 26 °C to 38 °C equivalent to heating load of 4–6.5 kW when ambient air temperature remained between 10 °C and 18 °C at Ludhiana climate (30°N) India. Heat transfer model predicted about 26.2 kW and 13.4 kW of supplemental heat during severe and moderate night temperatures of −5 °C and 10 °C which can be met through complete combustion of 80 kg and 40 kg of paddy straw biomass per hour respectively to maintain Thgcd between 60 and 62 °C. Logarithmic drying model is the best fitting drying model for fenugreek drying. Economic analysis shows that the proposed technology can recover its cost within five years and has great adaptability potential in terms of paddy straw management in India.
doi_str_mv 10.1016/j.solener.2020.06.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2449483491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038092X20306113</els_id><sourcerecordid>2449483491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-d0ba312d881208797a05f7781e140543b82afc20faf607571233ec6752865f783</originalsourceid><addsrcrecordid>eNqFkE1P3DAQhi1EJRbKT0CyxLUJYzuJvSdUUdoiIfXSStwsrzNevCR2aiettmd-OF4t957m8H5pHkKuGNQMWHezq3McMGCqOXCooasBuhOyYo1kFeOtPCUrAKEqWPOnM3Ke8w6ASabkirx-wey34RPNk7FI4zT70f8zs4-BmtDTMfY4DD5saXS0zJhU2WWsNj6OJmf6vN8k39NtQgzPcclIbYoT7dMeE13yIeeGBenWFC-amc7JhOyKOPkJacD5b0wvH8kHZ4aMl-_3gvz6ev_z7nv1-OPbw93nx8oKIeeqh40RjPdKMQ5KrqWB1kmpGLIG2kZsFDfOcnDGdSBbybgQaDvZctUVoxIX5PrYO6X4e8E8611cUiiTmjfNulGiWbPiao-u8krOCZ2ekh9N2msG-gBc7_Q7cH0ArqHTBXjJ3R5zWF7444uarcdgsfcJ7az76P_T8AawsI3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449483491</pqid></control><display><type>article</type><title>Design, space optimization and modelling of solar-cum-biomass hybrid greenhouse crop dryer using flue gas heat transfer pipe network</title><source>Access via ScienceDirect (Elsevier)</source><creator>Sethi, V.P. ; Dhiman, Mankaran</creator><creatorcontrib>Sethi, V.P. ; Dhiman, Mankaran</creatorcontrib><description>•A hybrid crop dryer is presented.•Thermal model is developed and validated.•Heat transfer model predicts the heating load.•Economic analysis is presented. A solar-cum-biomass hybrid greenhouse crop dryer (HGCD) is presented to work on solar energy and on biomass heat for 24 h continuous operation at constant drying temperature of 62 °C. Vertical gap (clearance) between two consecutive trays is optimized for selected latitudes of 30°, 35°, 40°, 45° and 50°N. Global solar radiation and thermal models are developed to predict the solar radiation availability and HGCD chamber air temperature (Thgcd). Forced draft paddy straw bale combustor (FDPSBC) is used to generate flue gas above 500 °C temperature as supplemental heat source and coupled with flue gas heat transfer pipe network (FGHTPN) laid inside the HGCD to maintain Thgcd at constant temperature. Biomass heating load requirements (forced convection and radiation heats) were predicted through developed heat transfer model. The developed thermal model predicted the Thgcd of 26 °C to 38 °C equivalent to heating load of 4–6.5 kW when ambient air temperature remained between 10 °C and 18 °C at Ludhiana climate (30°N) India. Heat transfer model predicted about 26.2 kW and 13.4 kW of supplemental heat during severe and moderate night temperatures of −5 °C and 10 °C which can be met through complete combustion of 80 kg and 40 kg of paddy straw biomass per hour respectively to maintain Thgcd between 60 and 62 °C. Logarithmic drying model is the best fitting drying model for fenugreek drying. Economic analysis shows that the proposed technology can recover its cost within five years and has great adaptability potential in terms of paddy straw management in India.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/j.solener.2020.06.006</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Adaptability ; Agricultural economics ; Air temperature ; Biomass ; Biomass burning ; Biomass dryer ; Biomass energy production ; Combustion chambers ; Convection ; Convection heating ; Cost analysis ; Design optimization ; Drying ; Drying model ; Economic analysis ; Economic conditions ; Economic models ; Energy crops ; Fenugreek ; Flue gas ; Forced convection ; Heat transfer ; Heat transfer model ; Heating load ; Hybrid greenhouse dryer ; Pipes ; Solar dryer ; Solar energy ; Solar power ; Solar radiation ; Straw ; Temperature ; Temperature requirements ; Thermal analysis ; Thermal model ; Trays</subject><ispartof>Solar energy, 2020-08, Vol.206, p.120-135</ispartof><rights>2020 International Solar Energy Society</rights><rights>Copyright Pergamon Press Inc. Aug 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-d0ba312d881208797a05f7781e140543b82afc20faf607571233ec6752865f783</citedby><cites>FETCH-LOGICAL-c337t-d0ba312d881208797a05f7781e140543b82afc20faf607571233ec6752865f783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solener.2020.06.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Sethi, V.P.</creatorcontrib><creatorcontrib>Dhiman, Mankaran</creatorcontrib><title>Design, space optimization and modelling of solar-cum-biomass hybrid greenhouse crop dryer using flue gas heat transfer pipe network</title><title>Solar energy</title><description>•A hybrid crop dryer is presented.•Thermal model is developed and validated.•Heat transfer model predicts the heating load.•Economic analysis is presented. A solar-cum-biomass hybrid greenhouse crop dryer (HGCD) is presented to work on solar energy and on biomass heat for 24 h continuous operation at constant drying temperature of 62 °C. Vertical gap (clearance) between two consecutive trays is optimized for selected latitudes of 30°, 35°, 40°, 45° and 50°N. Global solar radiation and thermal models are developed to predict the solar radiation availability and HGCD chamber air temperature (Thgcd). Forced draft paddy straw bale combustor (FDPSBC) is used to generate flue gas above 500 °C temperature as supplemental heat source and coupled with flue gas heat transfer pipe network (FGHTPN) laid inside the HGCD to maintain Thgcd at constant temperature. Biomass heating load requirements (forced convection and radiation heats) were predicted through developed heat transfer model. The developed thermal model predicted the Thgcd of 26 °C to 38 °C equivalent to heating load of 4–6.5 kW when ambient air temperature remained between 10 °C and 18 °C at Ludhiana climate (30°N) India. Heat transfer model predicted about 26.2 kW and 13.4 kW of supplemental heat during severe and moderate night temperatures of −5 °C and 10 °C which can be met through complete combustion of 80 kg and 40 kg of paddy straw biomass per hour respectively to maintain Thgcd between 60 and 62 °C. Logarithmic drying model is the best fitting drying model for fenugreek drying. Economic analysis shows that the proposed technology can recover its cost within five years and has great adaptability potential in terms of paddy straw management in India.</description><subject>Adaptability</subject><subject>Agricultural economics</subject><subject>Air temperature</subject><subject>Biomass</subject><subject>Biomass burning</subject><subject>Biomass dryer</subject><subject>Biomass energy production</subject><subject>Combustion chambers</subject><subject>Convection</subject><subject>Convection heating</subject><subject>Cost analysis</subject><subject>Design optimization</subject><subject>Drying</subject><subject>Drying model</subject><subject>Economic analysis</subject><subject>Economic conditions</subject><subject>Economic models</subject><subject>Energy crops</subject><subject>Fenugreek</subject><subject>Flue gas</subject><subject>Forced convection</subject><subject>Heat transfer</subject><subject>Heat transfer model</subject><subject>Heating load</subject><subject>Hybrid greenhouse dryer</subject><subject>Pipes</subject><subject>Solar dryer</subject><subject>Solar energy</subject><subject>Solar power</subject><subject>Solar radiation</subject><subject>Straw</subject><subject>Temperature</subject><subject>Temperature requirements</subject><subject>Thermal analysis</subject><subject>Thermal model</subject><subject>Trays</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1P3DAQhi1EJRbKT0CyxLUJYzuJvSdUUdoiIfXSStwsrzNevCR2aiettmd-OF4t957m8H5pHkKuGNQMWHezq3McMGCqOXCooasBuhOyYo1kFeOtPCUrAKEqWPOnM3Ke8w6ASabkirx-wey34RPNk7FI4zT70f8zs4-BmtDTMfY4DD5saXS0zJhU2WWsNj6OJmf6vN8k39NtQgzPcclIbYoT7dMeE13yIeeGBenWFC-amc7JhOyKOPkJacD5b0wvH8kHZ4aMl-_3gvz6ev_z7nv1-OPbw93nx8oKIeeqh40RjPdKMQ5KrqWB1kmpGLIG2kZsFDfOcnDGdSBbybgQaDvZctUVoxIX5PrYO6X4e8E8611cUiiTmjfNulGiWbPiao-u8krOCZ2ekh9N2msG-gBc7_Q7cH0ArqHTBXjJ3R5zWF7444uarcdgsfcJ7az76P_T8AawsI3A</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Sethi, V.P.</creator><creator>Dhiman, Mankaran</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>202008</creationdate><title>Design, space optimization and modelling of solar-cum-biomass hybrid greenhouse crop dryer using flue gas heat transfer pipe network</title><author>Sethi, V.P. ; Dhiman, Mankaran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-d0ba312d881208797a05f7781e140543b82afc20faf607571233ec6752865f783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptability</topic><topic>Agricultural economics</topic><topic>Air temperature</topic><topic>Biomass</topic><topic>Biomass burning</topic><topic>Biomass dryer</topic><topic>Biomass energy production</topic><topic>Combustion chambers</topic><topic>Convection</topic><topic>Convection heating</topic><topic>Cost analysis</topic><topic>Design optimization</topic><topic>Drying</topic><topic>Drying model</topic><topic>Economic analysis</topic><topic>Economic conditions</topic><topic>Economic models</topic><topic>Energy crops</topic><topic>Fenugreek</topic><topic>Flue gas</topic><topic>Forced convection</topic><topic>Heat transfer</topic><topic>Heat transfer model</topic><topic>Heating load</topic><topic>Hybrid greenhouse dryer</topic><topic>Pipes</topic><topic>Solar dryer</topic><topic>Solar energy</topic><topic>Solar power</topic><topic>Solar radiation</topic><topic>Straw</topic><topic>Temperature</topic><topic>Temperature requirements</topic><topic>Thermal analysis</topic><topic>Thermal model</topic><topic>Trays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sethi, V.P.</creatorcontrib><creatorcontrib>Dhiman, Mankaran</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sethi, V.P.</au><au>Dhiman, Mankaran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design, space optimization and modelling of solar-cum-biomass hybrid greenhouse crop dryer using flue gas heat transfer pipe network</atitle><jtitle>Solar energy</jtitle><date>2020-08</date><risdate>2020</risdate><volume>206</volume><spage>120</spage><epage>135</epage><pages>120-135</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><abstract>•A hybrid crop dryer is presented.•Thermal model is developed and validated.•Heat transfer model predicts the heating load.•Economic analysis is presented. A solar-cum-biomass hybrid greenhouse crop dryer (HGCD) is presented to work on solar energy and on biomass heat for 24 h continuous operation at constant drying temperature of 62 °C. Vertical gap (clearance) between two consecutive trays is optimized for selected latitudes of 30°, 35°, 40°, 45° and 50°N. Global solar radiation and thermal models are developed to predict the solar radiation availability and HGCD chamber air temperature (Thgcd). Forced draft paddy straw bale combustor (FDPSBC) is used to generate flue gas above 500 °C temperature as supplemental heat source and coupled with flue gas heat transfer pipe network (FGHTPN) laid inside the HGCD to maintain Thgcd at constant temperature. Biomass heating load requirements (forced convection and radiation heats) were predicted through developed heat transfer model. The developed thermal model predicted the Thgcd of 26 °C to 38 °C equivalent to heating load of 4–6.5 kW when ambient air temperature remained between 10 °C and 18 °C at Ludhiana climate (30°N) India. Heat transfer model predicted about 26.2 kW and 13.4 kW of supplemental heat during severe and moderate night temperatures of −5 °C and 10 °C which can be met through complete combustion of 80 kg and 40 kg of paddy straw biomass per hour respectively to maintain Thgcd between 60 and 62 °C. Logarithmic drying model is the best fitting drying model for fenugreek drying. Economic analysis shows that the proposed technology can recover its cost within five years and has great adaptability potential in terms of paddy straw management in India.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.solener.2020.06.006</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0038-092X
ispartof Solar energy, 2020-08, Vol.206, p.120-135
issn 0038-092X
1471-1257
language eng
recordid cdi_proquest_journals_2449483491
source Access via ScienceDirect (Elsevier)
subjects Adaptability
Agricultural economics
Air temperature
Biomass
Biomass burning
Biomass dryer
Biomass energy production
Combustion chambers
Convection
Convection heating
Cost analysis
Design optimization
Drying
Drying model
Economic analysis
Economic conditions
Economic models
Energy crops
Fenugreek
Flue gas
Forced convection
Heat transfer
Heat transfer model
Heating load
Hybrid greenhouse dryer
Pipes
Solar dryer
Solar energy
Solar power
Solar radiation
Straw
Temperature
Temperature requirements
Thermal analysis
Thermal model
Trays
title Design, space optimization and modelling of solar-cum-biomass hybrid greenhouse crop dryer using flue gas heat transfer pipe network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A09%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design,%20space%20optimization%20and%20modelling%20of%20solar-cum-biomass%20hybrid%20greenhouse%20crop%20dryer%20using%20flue%20gas%20heat%20transfer%20pipe%20network&rft.jtitle=Solar%20energy&rft.au=Sethi,%20V.P.&rft.date=2020-08&rft.volume=206&rft.spage=120&rft.epage=135&rft.pages=120-135&rft.issn=0038-092X&rft.eissn=1471-1257&rft_id=info:doi/10.1016/j.solener.2020.06.006&rft_dat=%3Cproquest_cross%3E2449483491%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449483491&rft_id=info:pmid/&rft_els_id=S0038092X20306113&rfr_iscdi=true