Phenylalkylamines in calcium channels: computational analysis of experimental structures
Experimental 3D structures of calcium channels with phenylalkylamines (PAAs) provide basis for further analysis of atomic mechanisms of these important cardiovascular drugs. In the crystal structure of the engineered calcium channel CavAb with Br-verapamil and in the cryo-EM structure of the Cav1.1...
Gespeichert in:
Veröffentlicht in: | Journal of computer-aided molecular design 2020-11, Vol.34 (11), p.1157-1169 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1169 |
---|---|
container_issue | 11 |
container_start_page | 1157 |
container_title | Journal of computer-aided molecular design |
container_volume | 34 |
creator | Tikhonov, Denis B. Lin, Lianyun Yang, Daniel S. C. Yuchi, Zhiguang Zhorov, Boris S. |
description | Experimental 3D structures of calcium channels with phenylalkylamines (PAAs) provide basis for further analysis of atomic mechanisms of these important cardiovascular drugs. In the crystal structure of the engineered calcium channel CavAb with Br-verapamil and in the cryo-EM structure of the Cav1.1 channel with verapamil, the ligands bind in the inner pore. However, there are significant differences between these structures. In the crystal structure the ligand ammonium group is much closer to the ion in the selectivity-filter region Site 3, which is most proximal to the inner pore, than in the cryo-EM structure. Here we used Monte Carlo energy minimizations to dock PAAs in calcium channels. Our computations suggest that in the crystal structure Site 3 is occupied by a water molecule rather than by a calcium ion. Analysis of the published electron density map does not rule out this possibility. In the cryo-EM structures the ammonium group of verapamil is shifted from the calcium ion in Site 3 either along the pore axis, towards the cytoplasm or away from the axis. Our unbiased docking reproduced these binding modes. However, in the cryo-EM structures detergent and lipid molecules interact with verapamil. When we removed these molecules, the nitrile group of verapamil bound to the calcium ion in Site 3. Models of Cav1.2 with different PAAs suggest similar binding modes and direct contacts of the ligands electronegative atoms with the calcium ion in Site 3. Such interactions explain paradoxes in structure–activity relationships of PAAs. |
doi_str_mv | 10.1007/s10822-020-00330-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2449457169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2449457169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-6b9d93992aa57d2fd3e7525810c577e90b6d233d0c0770e83b85df1ed07644d73</originalsourceid><addsrcrecordid>eNp9kE1LwzAYx4Mobk6_gAcpeK4-SZqm8SbDNxjoQWG3kCap62zTmbTgvr3RTr15-efwf8nDD6FTDBcYgF8GDAUhKRBIASiNuoemmHGaZoLhfTQFEa2cZcsJOgphDbEkcjhEE0ryrMAMT9HyaWXdtlHNW5S2djYktUu0anQ9tIleKedsE64S3bWboVd93TnVJCrKNtQh6arEfmysr1vr-miE3g-6H7wNx-igUk2wJ7t3hl5ub57n9-ni8e5hfr1INeWsT_NSGEGFIEoxbkhlqOWMsAKDZpxbAWVuCKUGNHAOtqBlwUyFrQGeZ5nhdIbOx92N794HG3q57gYf7wuSZJnIGMe5iCkyprTvQvC2kpt4s_JbiUF-wZQjTBlhym-YEmLpbDc9lK01v5UfejFAx0CIlnu1_u_vf2Y_AXnYgFI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449457169</pqid></control><display><type>article</type><title>Phenylalkylamines in calcium channels: computational analysis of experimental structures</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tikhonov, Denis B. ; Lin, Lianyun ; Yang, Daniel S. C. ; Yuchi, Zhiguang ; Zhorov, Boris S.</creator><creatorcontrib>Tikhonov, Denis B. ; Lin, Lianyun ; Yang, Daniel S. C. ; Yuchi, Zhiguang ; Zhorov, Boris S.</creatorcontrib><description>Experimental 3D structures of calcium channels with phenylalkylamines (PAAs) provide basis for further analysis of atomic mechanisms of these important cardiovascular drugs. In the crystal structure of the engineered calcium channel CavAb with Br-verapamil and in the cryo-EM structure of the Cav1.1 channel with verapamil, the ligands bind in the inner pore. However, there are significant differences between these structures. In the crystal structure the ligand ammonium group is much closer to the ion in the selectivity-filter region Site 3, which is most proximal to the inner pore, than in the cryo-EM structure. Here we used Monte Carlo energy minimizations to dock PAAs in calcium channels. Our computations suggest that in the crystal structure Site 3 is occupied by a water molecule rather than by a calcium ion. Analysis of the published electron density map does not rule out this possibility. In the cryo-EM structures the ammonium group of verapamil is shifted from the calcium ion in Site 3 either along the pore axis, towards the cytoplasm or away from the axis. Our unbiased docking reproduced these binding modes. However, in the cryo-EM structures detergent and lipid molecules interact with verapamil. When we removed these molecules, the nitrile group of verapamil bound to the calcium ion in Site 3. Models of Cav1.2 with different PAAs suggest similar binding modes and direct contacts of the ligands electronegative atoms with the calcium ion in Site 3. Such interactions explain paradoxes in structure–activity relationships of PAAs.</description><identifier>ISSN: 0920-654X</identifier><identifier>EISSN: 1573-4951</identifier><identifier>DOI: 10.1007/s10822-020-00330-0</identifier><identifier>PMID: 32648151</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Ammonium ; Animal Anatomy ; Binding ; Calcium channels ; Calcium ions ; Channels ; Chemistry ; Chemistry and Materials Science ; Computer Applications in Chemistry ; Crystal structure ; Cytoplasm ; Electron density ; Electronegativity ; Histology ; Ligands ; Lipids ; Morphology ; Physical Chemistry ; Selectivity ; Water chemistry</subject><ispartof>Journal of computer-aided molecular design, 2020-11, Vol.34 (11), p.1157-1169</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-6b9d93992aa57d2fd3e7525810c577e90b6d233d0c0770e83b85df1ed07644d73</citedby><cites>FETCH-LOGICAL-c375t-6b9d93992aa57d2fd3e7525810c577e90b6d233d0c0770e83b85df1ed07644d73</cites><orcidid>0000-0001-8523-4305</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10822-020-00330-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10822-020-00330-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32648151$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tikhonov, Denis B.</creatorcontrib><creatorcontrib>Lin, Lianyun</creatorcontrib><creatorcontrib>Yang, Daniel S. C.</creatorcontrib><creatorcontrib>Yuchi, Zhiguang</creatorcontrib><creatorcontrib>Zhorov, Boris S.</creatorcontrib><title>Phenylalkylamines in calcium channels: computational analysis of experimental structures</title><title>Journal of computer-aided molecular design</title><addtitle>J Comput Aided Mol Des</addtitle><addtitle>J Comput Aided Mol Des</addtitle><description>Experimental 3D structures of calcium channels with phenylalkylamines (PAAs) provide basis for further analysis of atomic mechanisms of these important cardiovascular drugs. In the crystal structure of the engineered calcium channel CavAb with Br-verapamil and in the cryo-EM structure of the Cav1.1 channel with verapamil, the ligands bind in the inner pore. However, there are significant differences between these structures. In the crystal structure the ligand ammonium group is much closer to the ion in the selectivity-filter region Site 3, which is most proximal to the inner pore, than in the cryo-EM structure. Here we used Monte Carlo energy minimizations to dock PAAs in calcium channels. Our computations suggest that in the crystal structure Site 3 is occupied by a water molecule rather than by a calcium ion. Analysis of the published electron density map does not rule out this possibility. In the cryo-EM structures the ammonium group of verapamil is shifted from the calcium ion in Site 3 either along the pore axis, towards the cytoplasm or away from the axis. Our unbiased docking reproduced these binding modes. However, in the cryo-EM structures detergent and lipid molecules interact with verapamil. When we removed these molecules, the nitrile group of verapamil bound to the calcium ion in Site 3. Models of Cav1.2 with different PAAs suggest similar binding modes and direct contacts of the ligands electronegative atoms with the calcium ion in Site 3. Such interactions explain paradoxes in structure–activity relationships of PAAs.</description><subject>Ammonium</subject><subject>Animal Anatomy</subject><subject>Binding</subject><subject>Calcium channels</subject><subject>Calcium ions</subject><subject>Channels</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer Applications in Chemistry</subject><subject>Crystal structure</subject><subject>Cytoplasm</subject><subject>Electron density</subject><subject>Electronegativity</subject><subject>Histology</subject><subject>Ligands</subject><subject>Lipids</subject><subject>Morphology</subject><subject>Physical Chemistry</subject><subject>Selectivity</subject><subject>Water chemistry</subject><issn>0920-654X</issn><issn>1573-4951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LwzAYx4Mobk6_gAcpeK4-SZqm8SbDNxjoQWG3kCap62zTmbTgvr3RTr15-efwf8nDD6FTDBcYgF8GDAUhKRBIASiNuoemmHGaZoLhfTQFEa2cZcsJOgphDbEkcjhEE0ryrMAMT9HyaWXdtlHNW5S2djYktUu0anQ9tIleKedsE64S3bWboVd93TnVJCrKNtQh6arEfmysr1vr-miE3g-6H7wNx-igUk2wJ7t3hl5ub57n9-ni8e5hfr1INeWsT_NSGEGFIEoxbkhlqOWMsAKDZpxbAWVuCKUGNHAOtqBlwUyFrQGeZ5nhdIbOx92N794HG3q57gYf7wuSZJnIGMe5iCkyprTvQvC2kpt4s_JbiUF-wZQjTBlhym-YEmLpbDc9lK01v5UfejFAx0CIlnu1_u_vf2Y_AXnYgFI</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Tikhonov, Denis B.</creator><creator>Lin, Lianyun</creator><creator>Yang, Daniel S. C.</creator><creator>Yuchi, Zhiguang</creator><creator>Zhorov, Boris S.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8523-4305</orcidid></search><sort><creationdate>20201101</creationdate><title>Phenylalkylamines in calcium channels: computational analysis of experimental structures</title><author>Tikhonov, Denis B. ; Lin, Lianyun ; Yang, Daniel S. C. ; Yuchi, Zhiguang ; Zhorov, Boris S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-6b9d93992aa57d2fd3e7525810c577e90b6d233d0c0770e83b85df1ed07644d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ammonium</topic><topic>Animal Anatomy</topic><topic>Binding</topic><topic>Calcium channels</topic><topic>Calcium ions</topic><topic>Channels</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer Applications in Chemistry</topic><topic>Crystal structure</topic><topic>Cytoplasm</topic><topic>Electron density</topic><topic>Electronegativity</topic><topic>Histology</topic><topic>Ligands</topic><topic>Lipids</topic><topic>Morphology</topic><topic>Physical Chemistry</topic><topic>Selectivity</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tikhonov, Denis B.</creatorcontrib><creatorcontrib>Lin, Lianyun</creatorcontrib><creatorcontrib>Yang, Daniel S. C.</creatorcontrib><creatorcontrib>Yuchi, Zhiguang</creatorcontrib><creatorcontrib>Zhorov, Boris S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of computer-aided molecular design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tikhonov, Denis B.</au><au>Lin, Lianyun</au><au>Yang, Daniel S. C.</au><au>Yuchi, Zhiguang</au><au>Zhorov, Boris S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phenylalkylamines in calcium channels: computational analysis of experimental structures</atitle><jtitle>Journal of computer-aided molecular design</jtitle><stitle>J Comput Aided Mol Des</stitle><addtitle>J Comput Aided Mol Des</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>34</volume><issue>11</issue><spage>1157</spage><epage>1169</epage><pages>1157-1169</pages><issn>0920-654X</issn><eissn>1573-4951</eissn><abstract>Experimental 3D structures of calcium channels with phenylalkylamines (PAAs) provide basis for further analysis of atomic mechanisms of these important cardiovascular drugs. In the crystal structure of the engineered calcium channel CavAb with Br-verapamil and in the cryo-EM structure of the Cav1.1 channel with verapamil, the ligands bind in the inner pore. However, there are significant differences between these structures. In the crystal structure the ligand ammonium group is much closer to the ion in the selectivity-filter region Site 3, which is most proximal to the inner pore, than in the cryo-EM structure. Here we used Monte Carlo energy minimizations to dock PAAs in calcium channels. Our computations suggest that in the crystal structure Site 3 is occupied by a water molecule rather than by a calcium ion. Analysis of the published electron density map does not rule out this possibility. In the cryo-EM structures the ammonium group of verapamil is shifted from the calcium ion in Site 3 either along the pore axis, towards the cytoplasm or away from the axis. Our unbiased docking reproduced these binding modes. However, in the cryo-EM structures detergent and lipid molecules interact with verapamil. When we removed these molecules, the nitrile group of verapamil bound to the calcium ion in Site 3. Models of Cav1.2 with different PAAs suggest similar binding modes and direct contacts of the ligands electronegative atoms with the calcium ion in Site 3. Such interactions explain paradoxes in structure–activity relationships of PAAs.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>32648151</pmid><doi>10.1007/s10822-020-00330-0</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8523-4305</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-654X |
ispartof | Journal of computer-aided molecular design, 2020-11, Vol.34 (11), p.1157-1169 |
issn | 0920-654X 1573-4951 |
language | eng |
recordid | cdi_proquest_journals_2449457169 |
source | SpringerLink Journals - AutoHoldings |
subjects | Ammonium Animal Anatomy Binding Calcium channels Calcium ions Channels Chemistry Chemistry and Materials Science Computer Applications in Chemistry Crystal structure Cytoplasm Electron density Electronegativity Histology Ligands Lipids Morphology Physical Chemistry Selectivity Water chemistry |
title | Phenylalkylamines in calcium channels: computational analysis of experimental structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A48%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phenylalkylamines%20in%20calcium%20channels:%20computational%20analysis%20of%20experimental%20structures&rft.jtitle=Journal%20of%20computer-aided%20molecular%20design&rft.au=Tikhonov,%20Denis%20B.&rft.date=2020-11-01&rft.volume=34&rft.issue=11&rft.spage=1157&rft.epage=1169&rft.pages=1157-1169&rft.issn=0920-654X&rft.eissn=1573-4951&rft_id=info:doi/10.1007/s10822-020-00330-0&rft_dat=%3Cproquest_cross%3E2449457169%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449457169&rft_id=info:pmid/32648151&rfr_iscdi=true |