Origin of strong-field-induced low-order harmonic generation in amorphous quartz
Kerr-type nonlinearities form the basis for our physical understanding of nonlinear optical phenomena in condensed matter, such as self-focusing, solitary waves and wave mixing 1 – 3 . In strong fields, they are complemented by higher-order nonlinearities that enable high-harmonic generation, which...
Gespeichert in:
Veröffentlicht in: | Nature physics 2020-10, Vol.16 (10), p.1035-1039 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1039 |
---|---|
container_issue | 10 |
container_start_page | 1035 |
container_title | Nature physics |
container_volume | 16 |
creator | Jürgens, P. Liewehr, B. Kruse, B. Peltz, C. Engel, D. Husakou, A. Witting, T. Ivanov, M. Vrakking, M. J. J. Fennel, T. Mermillod-Blondin, A. |
description | Kerr-type nonlinearities form the basis for our physical understanding of nonlinear optical phenomena in condensed matter, such as self-focusing, solitary waves and wave mixing
1
–
3
. In strong fields, they are complemented by higher-order nonlinearities that enable high-harmonic generation, which is currently understood as the interplay of light-driven intraband charge dynamics and interband recombination
4
–
6
. Remarkably, the nonlinear response emerging from the subcycle injection dynamics of electrons into the conduction band, that is from ionization, has been almost completely overlooked in solids and only partially considered in the gas phase
7
–
10
. Here, we reveal this strong-field-induced nonlinearity in a-SiO
2
as a typical wide-bandgap dielectric by means of time-resolved, low-order wave-mixing experiments, and show that, close to the material damage threshold, the so far unexplored injection current provides the leading contribution. The sensitivity of the harmonic emission to the subcycle ionization dynamics offers an original approach to characterize the evolution of laser-induced plasma formation in optical microprocessing.
Strong-field-induced nonlinearities from the injection of electrons into the conduction band contribute to harmonic generation in amorphous quartz. Close to the damage threshold, they dominate over intraband and interband contributions. |
doi_str_mv | 10.1038/s41567-020-0943-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2449454813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2449454813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-3ad900dd8633fdf05d184940bffbfef2063ab0221805f971700d50c0e193809a3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC5-jkY7-OUvyCQj3oOWQ3yXZLm7STXUR_vSkrevI0c3ied5iXkGsGtwxEdRcly4uSAgcKtRRUnpAZK2VOuazY6e9einNyEeMGQPKCiRl5XWHf9T4LLosDBt9R19utob03Y2tNtg0fNKCxmK017oLv26yz3qIe-uCzJOpdwP06jDE7jBqHr0ty5vQ22qufOSfvjw9vi2e6XD29LO6XtJU8H6jQpgYwpiqEcMZBblglawmNc42zjkMhdAOcswpyV5esTHAOLVhWiwpqLebkZsrdYziMNg5qE0b06aTiMiXl6W-RKDZRLYYY0Tq1x36n8VMxUMfi1FScSsWpY3FKJodPTkys7yz-Jf8vfQM6RHB5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449454813</pqid></control><display><type>article</type><title>Origin of strong-field-induced low-order harmonic generation in amorphous quartz</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Jürgens, P. ; Liewehr, B. ; Kruse, B. ; Peltz, C. ; Engel, D. ; Husakou, A. ; Witting, T. ; Ivanov, M. ; Vrakking, M. J. J. ; Fennel, T. ; Mermillod-Blondin, A.</creator><creatorcontrib>Jürgens, P. ; Liewehr, B. ; Kruse, B. ; Peltz, C. ; Engel, D. ; Husakou, A. ; Witting, T. ; Ivanov, M. ; Vrakking, M. J. J. ; Fennel, T. ; Mermillod-Blondin, A.</creatorcontrib><description>Kerr-type nonlinearities form the basis for our physical understanding of nonlinear optical phenomena in condensed matter, such as self-focusing, solitary waves and wave mixing
1
–
3
. In strong fields, they are complemented by higher-order nonlinearities that enable high-harmonic generation, which is currently understood as the interplay of light-driven intraband charge dynamics and interband recombination
4
–
6
. Remarkably, the nonlinear response emerging from the subcycle injection dynamics of electrons into the conduction band, that is from ionization, has been almost completely overlooked in solids and only partially considered in the gas phase
7
–
10
. Here, we reveal this strong-field-induced nonlinearity in a-SiO
2
as a typical wide-bandgap dielectric by means of time-resolved, low-order wave-mixing experiments, and show that, close to the material damage threshold, the so far unexplored injection current provides the leading contribution. The sensitivity of the harmonic emission to the subcycle ionization dynamics offers an original approach to characterize the evolution of laser-induced plasma formation in optical microprocessing.
Strong-field-induced nonlinearities from the injection of electrons into the conduction band contribute to harmonic generation in amorphous quartz. Close to the damage threshold, they dominate over intraband and interband contributions.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-020-0943-4</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/400/385 ; 639/624/400/3923 ; 639/624/400/584 ; Asymmetry ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Conduction bands ; Damage ; Dielectric strength ; Electrons ; Experiments ; Harmonic generations ; Injection ; Injection current ; Ionization ; Laser plasmas ; Lasers ; Letter ; Mathematical and Computational Physics ; Molecular ; Nonlinear response ; Nonlinearity ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Plasma ; Quartz ; Silicon dioxide ; Solitary waves ; Spectrum analysis ; Symmetry ; Theoretical ; Yield point</subject><ispartof>Nature physics, 2020-10, Vol.16 (10), p.1035-1039</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-3ad900dd8633fdf05d184940bffbfef2063ab0221805f971700d50c0e193809a3</citedby><cites>FETCH-LOGICAL-c425t-3ad900dd8633fdf05d184940bffbfef2063ab0221805f971700d50c0e193809a3</cites><orcidid>0000-0002-3523-3037 ; 0000-0002-8817-2469 ; 0000-0002-2667-7488 ; 0000-0002-3249-1663 ; 0000-0002-4149-5164 ; 0000-0003-0973-7722 ; 0000-0003-1312-6561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-020-0943-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-020-0943-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Jürgens, P.</creatorcontrib><creatorcontrib>Liewehr, B.</creatorcontrib><creatorcontrib>Kruse, B.</creatorcontrib><creatorcontrib>Peltz, C.</creatorcontrib><creatorcontrib>Engel, D.</creatorcontrib><creatorcontrib>Husakou, A.</creatorcontrib><creatorcontrib>Witting, T.</creatorcontrib><creatorcontrib>Ivanov, M.</creatorcontrib><creatorcontrib>Vrakking, M. J. J.</creatorcontrib><creatorcontrib>Fennel, T.</creatorcontrib><creatorcontrib>Mermillod-Blondin, A.</creatorcontrib><title>Origin of strong-field-induced low-order harmonic generation in amorphous quartz</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Kerr-type nonlinearities form the basis for our physical understanding of nonlinear optical phenomena in condensed matter, such as self-focusing, solitary waves and wave mixing
1
–
3
. In strong fields, they are complemented by higher-order nonlinearities that enable high-harmonic generation, which is currently understood as the interplay of light-driven intraband charge dynamics and interband recombination
4
–
6
. Remarkably, the nonlinear response emerging from the subcycle injection dynamics of electrons into the conduction band, that is from ionization, has been almost completely overlooked in solids and only partially considered in the gas phase
7
–
10
. Here, we reveal this strong-field-induced nonlinearity in a-SiO
2
as a typical wide-bandgap dielectric by means of time-resolved, low-order wave-mixing experiments, and show that, close to the material damage threshold, the so far unexplored injection current provides the leading contribution. The sensitivity of the harmonic emission to the subcycle ionization dynamics offers an original approach to characterize the evolution of laser-induced plasma formation in optical microprocessing.
Strong-field-induced nonlinearities from the injection of electrons into the conduction band contribute to harmonic generation in amorphous quartz. Close to the damage threshold, they dominate over intraband and interband contributions.</description><subject>639/624/400/385</subject><subject>639/624/400/3923</subject><subject>639/624/400/584</subject><subject>Asymmetry</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Conduction bands</subject><subject>Damage</subject><subject>Dielectric strength</subject><subject>Electrons</subject><subject>Experiments</subject><subject>Harmonic generations</subject><subject>Injection</subject><subject>Injection current</subject><subject>Ionization</subject><subject>Laser plasmas</subject><subject>Lasers</subject><subject>Letter</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Nonlinear response</subject><subject>Nonlinearity</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plasma</subject><subject>Quartz</subject><subject>Silicon dioxide</subject><subject>Solitary waves</subject><subject>Spectrum analysis</subject><subject>Symmetry</subject><subject>Theoretical</subject><subject>Yield point</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wNuC5-jkY7-OUvyCQj3oOWQ3yXZLm7STXUR_vSkrevI0c3ied5iXkGsGtwxEdRcly4uSAgcKtRRUnpAZK2VOuazY6e9einNyEeMGQPKCiRl5XWHf9T4LLosDBt9R19utob03Y2tNtg0fNKCxmK017oLv26yz3qIe-uCzJOpdwP06jDE7jBqHr0ty5vQ22qufOSfvjw9vi2e6XD29LO6XtJU8H6jQpgYwpiqEcMZBblglawmNc42zjkMhdAOcswpyV5esTHAOLVhWiwpqLebkZsrdYziMNg5qE0b06aTiMiXl6W-RKDZRLYYY0Tq1x36n8VMxUMfi1FScSsWpY3FKJodPTkys7yz-Jf8vfQM6RHB5</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Jürgens, P.</creator><creator>Liewehr, B.</creator><creator>Kruse, B.</creator><creator>Peltz, C.</creator><creator>Engel, D.</creator><creator>Husakou, A.</creator><creator>Witting, T.</creator><creator>Ivanov, M.</creator><creator>Vrakking, M. J. J.</creator><creator>Fennel, T.</creator><creator>Mermillod-Blondin, A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-3523-3037</orcidid><orcidid>https://orcid.org/0000-0002-8817-2469</orcidid><orcidid>https://orcid.org/0000-0002-2667-7488</orcidid><orcidid>https://orcid.org/0000-0002-3249-1663</orcidid><orcidid>https://orcid.org/0000-0002-4149-5164</orcidid><orcidid>https://orcid.org/0000-0003-0973-7722</orcidid><orcidid>https://orcid.org/0000-0003-1312-6561</orcidid></search><sort><creationdate>20201001</creationdate><title>Origin of strong-field-induced low-order harmonic generation in amorphous quartz</title><author>Jürgens, P. ; Liewehr, B. ; Kruse, B. ; Peltz, C. ; Engel, D. ; Husakou, A. ; Witting, T. ; Ivanov, M. ; Vrakking, M. J. J. ; Fennel, T. ; Mermillod-Blondin, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-3ad900dd8633fdf05d184940bffbfef2063ab0221805f971700d50c0e193809a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/624/400/385</topic><topic>639/624/400/3923</topic><topic>639/624/400/584</topic><topic>Asymmetry</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Conduction bands</topic><topic>Damage</topic><topic>Dielectric strength</topic><topic>Electrons</topic><topic>Experiments</topic><topic>Harmonic generations</topic><topic>Injection</topic><topic>Injection current</topic><topic>Ionization</topic><topic>Laser plasmas</topic><topic>Lasers</topic><topic>Letter</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Nonlinear response</topic><topic>Nonlinearity</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plasma</topic><topic>Quartz</topic><topic>Silicon dioxide</topic><topic>Solitary waves</topic><topic>Spectrum analysis</topic><topic>Symmetry</topic><topic>Theoretical</topic><topic>Yield point</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jürgens, P.</creatorcontrib><creatorcontrib>Liewehr, B.</creatorcontrib><creatorcontrib>Kruse, B.</creatorcontrib><creatorcontrib>Peltz, C.</creatorcontrib><creatorcontrib>Engel, D.</creatorcontrib><creatorcontrib>Husakou, A.</creatorcontrib><creatorcontrib>Witting, T.</creatorcontrib><creatorcontrib>Ivanov, M.</creatorcontrib><creatorcontrib>Vrakking, M. J. J.</creatorcontrib><creatorcontrib>Fennel, T.</creatorcontrib><creatorcontrib>Mermillod-Blondin, A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jürgens, P.</au><au>Liewehr, B.</au><au>Kruse, B.</au><au>Peltz, C.</au><au>Engel, D.</au><au>Husakou, A.</au><au>Witting, T.</au><au>Ivanov, M.</au><au>Vrakking, M. J. J.</au><au>Fennel, T.</au><au>Mermillod-Blondin, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Origin of strong-field-induced low-order harmonic generation in amorphous quartz</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>16</volume><issue>10</issue><spage>1035</spage><epage>1039</epage><pages>1035-1039</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Kerr-type nonlinearities form the basis for our physical understanding of nonlinear optical phenomena in condensed matter, such as self-focusing, solitary waves and wave mixing
1
–
3
. In strong fields, they are complemented by higher-order nonlinearities that enable high-harmonic generation, which is currently understood as the interplay of light-driven intraband charge dynamics and interband recombination
4
–
6
. Remarkably, the nonlinear response emerging from the subcycle injection dynamics of electrons into the conduction band, that is from ionization, has been almost completely overlooked in solids and only partially considered in the gas phase
7
–
10
. Here, we reveal this strong-field-induced nonlinearity in a-SiO
2
as a typical wide-bandgap dielectric by means of time-resolved, low-order wave-mixing experiments, and show that, close to the material damage threshold, the so far unexplored injection current provides the leading contribution. The sensitivity of the harmonic emission to the subcycle ionization dynamics offers an original approach to characterize the evolution of laser-induced plasma formation in optical microprocessing.
Strong-field-induced nonlinearities from the injection of electrons into the conduction band contribute to harmonic generation in amorphous quartz. Close to the damage threshold, they dominate over intraband and interband contributions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-020-0943-4</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-3523-3037</orcidid><orcidid>https://orcid.org/0000-0002-8817-2469</orcidid><orcidid>https://orcid.org/0000-0002-2667-7488</orcidid><orcidid>https://orcid.org/0000-0002-3249-1663</orcidid><orcidid>https://orcid.org/0000-0002-4149-5164</orcidid><orcidid>https://orcid.org/0000-0003-0973-7722</orcidid><orcidid>https://orcid.org/0000-0003-1312-6561</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2020-10, Vol.16 (10), p.1035-1039 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_journals_2449454813 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 639/624/400/385 639/624/400/3923 639/624/400/584 Asymmetry Atomic Classical and Continuum Physics Complex Systems Condensed Matter Physics Conduction bands Damage Dielectric strength Electrons Experiments Harmonic generations Injection Injection current Ionization Laser plasmas Lasers Letter Mathematical and Computational Physics Molecular Nonlinear response Nonlinearity Optical and Plasma Physics Physics Physics and Astronomy Plasma Quartz Silicon dioxide Solitary waves Spectrum analysis Symmetry Theoretical Yield point |
title | Origin of strong-field-induced low-order harmonic generation in amorphous quartz |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A49%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Origin%20of%20strong-field-induced%20low-order%20harmonic%20generation%20in%20amorphous%20quartz&rft.jtitle=Nature%20physics&rft.au=J%C3%BCrgens,%20P.&rft.date=2020-10-01&rft.volume=16&rft.issue=10&rft.spage=1035&rft.epage=1039&rft.pages=1035-1039&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-020-0943-4&rft_dat=%3Cproquest_cross%3E2449454813%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449454813&rft_id=info:pmid/&rfr_iscdi=true |