A new image segmentation method based on the ICSO-ISPCNN model

To address the issue of parameter settings in a pulse coupled neural network (PCNN), we propose a new image segmentation method based on the improved chicken swarm optimization algorithm and improved simplified PCNN (ICSO-ISPCNN) model. First, we improved a simplified PCNN model by modifying the dyn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2020-10, Vol.79 (37-38), p.28131-28154
Hauptverfasser: Liang, Jianhui, Wang, Lifang, Ma, Miao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28154
container_issue 37-38
container_start_page 28131
container_title Multimedia tools and applications
container_volume 79
creator Liang, Jianhui
Wang, Lifang
Ma, Miao
description To address the issue of parameter settings in a pulse coupled neural network (PCNN), we propose a new image segmentation method based on the improved chicken swarm optimization algorithm and improved simplified PCNN (ICSO-ISPCNN) model. First, we improved a simplified PCNN model by modifying the dynamic threshold function and meanwhile improved the chicken swarm optimization (CSO) algorithm by introducing the survival of the fittest mechanism. Then, a product cross entropy is utilized as the fitness function of the ICSO algorithm, and the parameter values of the ISPCNN model are determined through the effective teamwork of roosters, hens, and chicks in the chicken swarm. Finally, we can achieve the automatic image segmentation via the ISPCNN model, which has the best parameter values. The detailed experiments indicate that our method has more superior performance in terms of convergence and segmentation accuracy than methods based on the genetic algorithm and ant colony optimization algorithm.
doi_str_mv 10.1007/s11042-019-08596-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2449451157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2449451157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c077062821f26e7a1bc470daf82232d20e0a4b2360b81daa21a65213d65853993</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAc3QmyW42F6EsWgulFarnkN1k-4fubt1sEb-9qSt48zQzMO_NvB8htwj3CKAeAiJIzgA1gyzRKdNnZISJEkwpjuexFxkwlQBekqsQdgCYJlyOyOOENv6Tbmu79jT4de2b3vbbtqG17zeto4UN3tE49xtPZ_lqyWar13yxoHXr_P6aXFR2H_zNbx2T9-ent_yFzZfTWT6Zs1Kg7lkJSkHKM44VT72yWJRSgbNVxrngjoMHKwsuUigydNZytPE9FC5NskRoLcbkbvA9dO3H0Yfe7Npj18SThkupZYKnsGPCh62ya0PofGUOXUzWfRkEc-JkBk4mcjI_nMzJWgyiEJebte_-rP9RfQMzomdx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449451157</pqid></control><display><type>article</type><title>A new image segmentation method based on the ICSO-ISPCNN model</title><source>SpringerLink Journals - AutoHoldings</source><creator>Liang, Jianhui ; Wang, Lifang ; Ma, Miao</creator><creatorcontrib>Liang, Jianhui ; Wang, Lifang ; Ma, Miao</creatorcontrib><description>To address the issue of parameter settings in a pulse coupled neural network (PCNN), we propose a new image segmentation method based on the improved chicken swarm optimization algorithm and improved simplified PCNN (ICSO-ISPCNN) model. First, we improved a simplified PCNN model by modifying the dynamic threshold function and meanwhile improved the chicken swarm optimization (CSO) algorithm by introducing the survival of the fittest mechanism. Then, a product cross entropy is utilized as the fitness function of the ICSO algorithm, and the parameter values of the ISPCNN model are determined through the effective teamwork of roosters, hens, and chicks in the chicken swarm. Finally, we can achieve the automatic image segmentation via the ISPCNN model, which has the best parameter values. The detailed experiments indicate that our method has more superior performance in terms of convergence and segmentation accuracy than methods based on the genetic algorithm and ant colony optimization algorithm.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-019-08596-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Ant colony optimization ; Chicks ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Entropy (Information theory) ; Genetic algorithms ; Image segmentation ; Mathematical models ; Multimedia Information Systems ; Neural networks ; Optimization algorithms ; Parameters ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2020-10, Vol.79 (37-38), p.28131-28154</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c077062821f26e7a1bc470daf82232d20e0a4b2360b81daa21a65213d65853993</citedby><cites>FETCH-LOGICAL-c319t-c077062821f26e7a1bc470daf82232d20e0a4b2360b81daa21a65213d65853993</cites><orcidid>0000-0003-4745-757X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-019-08596-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-019-08596-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Liang, Jianhui</creatorcontrib><creatorcontrib>Wang, Lifang</creatorcontrib><creatorcontrib>Ma, Miao</creatorcontrib><title>A new image segmentation method based on the ICSO-ISPCNN model</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>To address the issue of parameter settings in a pulse coupled neural network (PCNN), we propose a new image segmentation method based on the improved chicken swarm optimization algorithm and improved simplified PCNN (ICSO-ISPCNN) model. First, we improved a simplified PCNN model by modifying the dynamic threshold function and meanwhile improved the chicken swarm optimization (CSO) algorithm by introducing the survival of the fittest mechanism. Then, a product cross entropy is utilized as the fitness function of the ICSO algorithm, and the parameter values of the ISPCNN model are determined through the effective teamwork of roosters, hens, and chicks in the chicken swarm. Finally, we can achieve the automatic image segmentation via the ISPCNN model, which has the best parameter values. The detailed experiments indicate that our method has more superior performance in terms of convergence and segmentation accuracy than methods based on the genetic algorithm and ant colony optimization algorithm.</description><subject>Ant colony optimization</subject><subject>Chicks</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Entropy (Information theory)</subject><subject>Genetic algorithms</subject><subject>Image segmentation</subject><subject>Mathematical models</subject><subject>Multimedia Information Systems</subject><subject>Neural networks</subject><subject>Optimization algorithms</subject><subject>Parameters</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwFPAc3QmyW42F6EsWgulFarnkN1k-4fubt1sEb-9qSt48zQzMO_NvB8htwj3CKAeAiJIzgA1gyzRKdNnZISJEkwpjuexFxkwlQBekqsQdgCYJlyOyOOENv6Tbmu79jT4de2b3vbbtqG17zeto4UN3tE49xtPZ_lqyWar13yxoHXr_P6aXFR2H_zNbx2T9-ent_yFzZfTWT6Zs1Kg7lkJSkHKM44VT72yWJRSgbNVxrngjoMHKwsuUigydNZytPE9FC5NskRoLcbkbvA9dO3H0Yfe7Npj18SThkupZYKnsGPCh62ya0PofGUOXUzWfRkEc-JkBk4mcjI_nMzJWgyiEJebte_-rP9RfQMzomdx</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Liang, Jianhui</creator><creator>Wang, Lifang</creator><creator>Ma, Miao</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4745-757X</orcidid></search><sort><creationdate>20201001</creationdate><title>A new image segmentation method based on the ICSO-ISPCNN model</title><author>Liang, Jianhui ; Wang, Lifang ; Ma, Miao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c077062821f26e7a1bc470daf82232d20e0a4b2360b81daa21a65213d65853993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ant colony optimization</topic><topic>Chicks</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Entropy (Information theory)</topic><topic>Genetic algorithms</topic><topic>Image segmentation</topic><topic>Mathematical models</topic><topic>Multimedia Information Systems</topic><topic>Neural networks</topic><topic>Optimization algorithms</topic><topic>Parameters</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Jianhui</creatorcontrib><creatorcontrib>Wang, Lifang</creatorcontrib><creatorcontrib>Ma, Miao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Jianhui</au><au>Wang, Lifang</au><au>Ma, Miao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new image segmentation method based on the ICSO-ISPCNN model</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>79</volume><issue>37-38</issue><spage>28131</spage><epage>28154</epage><pages>28131-28154</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>To address the issue of parameter settings in a pulse coupled neural network (PCNN), we propose a new image segmentation method based on the improved chicken swarm optimization algorithm and improved simplified PCNN (ICSO-ISPCNN) model. First, we improved a simplified PCNN model by modifying the dynamic threshold function and meanwhile improved the chicken swarm optimization (CSO) algorithm by introducing the survival of the fittest mechanism. Then, a product cross entropy is utilized as the fitness function of the ICSO algorithm, and the parameter values of the ISPCNN model are determined through the effective teamwork of roosters, hens, and chicks in the chicken swarm. Finally, we can achieve the automatic image segmentation via the ISPCNN model, which has the best parameter values. The detailed experiments indicate that our method has more superior performance in terms of convergence and segmentation accuracy than methods based on the genetic algorithm and ant colony optimization algorithm.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-019-08596-9</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-4745-757X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2020-10, Vol.79 (37-38), p.28131-28154
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2449451157
source SpringerLink Journals - AutoHoldings
subjects Ant colony optimization
Chicks
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Entropy (Information theory)
Genetic algorithms
Image segmentation
Mathematical models
Multimedia Information Systems
Neural networks
Optimization algorithms
Parameters
Special Purpose and Application-Based Systems
title A new image segmentation method based on the ICSO-ISPCNN model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T14%3A40%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20image%20segmentation%20method%20based%20on%20the%20ICSO-ISPCNN%20model&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Liang,%20Jianhui&rft.date=2020-10-01&rft.volume=79&rft.issue=37-38&rft.spage=28131&rft.epage=28154&rft.pages=28131-28154&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-019-08596-9&rft_dat=%3Cproquest_cross%3E2449451157%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449451157&rft_id=info:pmid/&rfr_iscdi=true