A new image segmentation method based on the ICSO-ISPCNN model
To address the issue of parameter settings in a pulse coupled neural network (PCNN), we propose a new image segmentation method based on the improved chicken swarm optimization algorithm and improved simplified PCNN (ICSO-ISPCNN) model. First, we improved a simplified PCNN model by modifying the dyn...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2020-10, Vol.79 (37-38), p.28131-28154 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28154 |
---|---|
container_issue | 37-38 |
container_start_page | 28131 |
container_title | Multimedia tools and applications |
container_volume | 79 |
creator | Liang, Jianhui Wang, Lifang Ma, Miao |
description | To address the issue of parameter settings in a pulse coupled neural network (PCNN), we propose a new image segmentation method based on the improved chicken swarm optimization algorithm and improved simplified PCNN (ICSO-ISPCNN) model. First, we improved a simplified PCNN model by modifying the dynamic threshold function and meanwhile improved the chicken swarm optimization (CSO) algorithm by introducing the survival of the fittest mechanism. Then, a product cross entropy is utilized as the fitness function of the ICSO algorithm, and the parameter values of the ISPCNN model are determined through the effective teamwork of roosters, hens, and chicks in the chicken swarm. Finally, we can achieve the automatic image segmentation via the ISPCNN model, which has the best parameter values. The detailed experiments indicate that our method has more superior performance in terms of convergence and segmentation accuracy than methods based on the genetic algorithm and ant colony optimization algorithm. |
doi_str_mv | 10.1007/s11042-019-08596-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2449451157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2449451157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c077062821f26e7a1bc470daf82232d20e0a4b2360b81daa21a65213d65853993</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAc3QmyW42F6EsWgulFarnkN1k-4fubt1sEb-9qSt48zQzMO_NvB8htwj3CKAeAiJIzgA1gyzRKdNnZISJEkwpjuexFxkwlQBekqsQdgCYJlyOyOOENv6Tbmu79jT4de2b3vbbtqG17zeto4UN3tE49xtPZ_lqyWar13yxoHXr_P6aXFR2H_zNbx2T9-ent_yFzZfTWT6Zs1Kg7lkJSkHKM44VT72yWJRSgbNVxrngjoMHKwsuUigydNZytPE9FC5NskRoLcbkbvA9dO3H0Yfe7Npj18SThkupZYKnsGPCh62ya0PofGUOXUzWfRkEc-JkBk4mcjI_nMzJWgyiEJebte_-rP9RfQMzomdx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449451157</pqid></control><display><type>article</type><title>A new image segmentation method based on the ICSO-ISPCNN model</title><source>SpringerLink Journals - AutoHoldings</source><creator>Liang, Jianhui ; Wang, Lifang ; Ma, Miao</creator><creatorcontrib>Liang, Jianhui ; Wang, Lifang ; Ma, Miao</creatorcontrib><description>To address the issue of parameter settings in a pulse coupled neural network (PCNN), we propose a new image segmentation method based on the improved chicken swarm optimization algorithm and improved simplified PCNN (ICSO-ISPCNN) model. First, we improved a simplified PCNN model by modifying the dynamic threshold function and meanwhile improved the chicken swarm optimization (CSO) algorithm by introducing the survival of the fittest mechanism. Then, a product cross entropy is utilized as the fitness function of the ICSO algorithm, and the parameter values of the ISPCNN model are determined through the effective teamwork of roosters, hens, and chicks in the chicken swarm. Finally, we can achieve the automatic image segmentation via the ISPCNN model, which has the best parameter values. The detailed experiments indicate that our method has more superior performance in terms of convergence and segmentation accuracy than methods based on the genetic algorithm and ant colony optimization algorithm.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-019-08596-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Ant colony optimization ; Chicks ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Entropy (Information theory) ; Genetic algorithms ; Image segmentation ; Mathematical models ; Multimedia Information Systems ; Neural networks ; Optimization algorithms ; Parameters ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2020-10, Vol.79 (37-38), p.28131-28154</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c077062821f26e7a1bc470daf82232d20e0a4b2360b81daa21a65213d65853993</citedby><cites>FETCH-LOGICAL-c319t-c077062821f26e7a1bc470daf82232d20e0a4b2360b81daa21a65213d65853993</cites><orcidid>0000-0003-4745-757X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-019-08596-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-019-08596-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Liang, Jianhui</creatorcontrib><creatorcontrib>Wang, Lifang</creatorcontrib><creatorcontrib>Ma, Miao</creatorcontrib><title>A new image segmentation method based on the ICSO-ISPCNN model</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>To address the issue of parameter settings in a pulse coupled neural network (PCNN), we propose a new image segmentation method based on the improved chicken swarm optimization algorithm and improved simplified PCNN (ICSO-ISPCNN) model. First, we improved a simplified PCNN model by modifying the dynamic threshold function and meanwhile improved the chicken swarm optimization (CSO) algorithm by introducing the survival of the fittest mechanism. Then, a product cross entropy is utilized as the fitness function of the ICSO algorithm, and the parameter values of the ISPCNN model are determined through the effective teamwork of roosters, hens, and chicks in the chicken swarm. Finally, we can achieve the automatic image segmentation via the ISPCNN model, which has the best parameter values. The detailed experiments indicate that our method has more superior performance in terms of convergence and segmentation accuracy than methods based on the genetic algorithm and ant colony optimization algorithm.</description><subject>Ant colony optimization</subject><subject>Chicks</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Entropy (Information theory)</subject><subject>Genetic algorithms</subject><subject>Image segmentation</subject><subject>Mathematical models</subject><subject>Multimedia Information Systems</subject><subject>Neural networks</subject><subject>Optimization algorithms</subject><subject>Parameters</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwFPAc3QmyW42F6EsWgulFarnkN1k-4fubt1sEb-9qSt48zQzMO_NvB8htwj3CKAeAiJIzgA1gyzRKdNnZISJEkwpjuexFxkwlQBekqsQdgCYJlyOyOOENv6Tbmu79jT4de2b3vbbtqG17zeto4UN3tE49xtPZ_lqyWar13yxoHXr_P6aXFR2H_zNbx2T9-ent_yFzZfTWT6Zs1Kg7lkJSkHKM44VT72yWJRSgbNVxrngjoMHKwsuUigydNZytPE9FC5NskRoLcbkbvA9dO3H0Yfe7Npj18SThkupZYKnsGPCh62ya0PofGUOXUzWfRkEc-JkBk4mcjI_nMzJWgyiEJebte_-rP9RfQMzomdx</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Liang, Jianhui</creator><creator>Wang, Lifang</creator><creator>Ma, Miao</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4745-757X</orcidid></search><sort><creationdate>20201001</creationdate><title>A new image segmentation method based on the ICSO-ISPCNN model</title><author>Liang, Jianhui ; Wang, Lifang ; Ma, Miao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c077062821f26e7a1bc470daf82232d20e0a4b2360b81daa21a65213d65853993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ant colony optimization</topic><topic>Chicks</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Entropy (Information theory)</topic><topic>Genetic algorithms</topic><topic>Image segmentation</topic><topic>Mathematical models</topic><topic>Multimedia Information Systems</topic><topic>Neural networks</topic><topic>Optimization algorithms</topic><topic>Parameters</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Jianhui</creatorcontrib><creatorcontrib>Wang, Lifang</creatorcontrib><creatorcontrib>Ma, Miao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Jianhui</au><au>Wang, Lifang</au><au>Ma, Miao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new image segmentation method based on the ICSO-ISPCNN model</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>79</volume><issue>37-38</issue><spage>28131</spage><epage>28154</epage><pages>28131-28154</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>To address the issue of parameter settings in a pulse coupled neural network (PCNN), we propose a new image segmentation method based on the improved chicken swarm optimization algorithm and improved simplified PCNN (ICSO-ISPCNN) model. First, we improved a simplified PCNN model by modifying the dynamic threshold function and meanwhile improved the chicken swarm optimization (CSO) algorithm by introducing the survival of the fittest mechanism. Then, a product cross entropy is utilized as the fitness function of the ICSO algorithm, and the parameter values of the ISPCNN model are determined through the effective teamwork of roosters, hens, and chicks in the chicken swarm. Finally, we can achieve the automatic image segmentation via the ISPCNN model, which has the best parameter values. The detailed experiments indicate that our method has more superior performance in terms of convergence and segmentation accuracy than methods based on the genetic algorithm and ant colony optimization algorithm.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-019-08596-9</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-4745-757X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2020-10, Vol.79 (37-38), p.28131-28154 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2449451157 |
source | SpringerLink Journals - AutoHoldings |
subjects | Ant colony optimization Chicks Computer Communication Networks Computer Science Data Structures and Information Theory Entropy (Information theory) Genetic algorithms Image segmentation Mathematical models Multimedia Information Systems Neural networks Optimization algorithms Parameters Special Purpose and Application-Based Systems |
title | A new image segmentation method based on the ICSO-ISPCNN model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T14%3A40%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20image%20segmentation%20method%20based%20on%20the%20ICSO-ISPCNN%20model&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Liang,%20Jianhui&rft.date=2020-10-01&rft.volume=79&rft.issue=37-38&rft.spage=28131&rft.epage=28154&rft.pages=28131-28154&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-019-08596-9&rft_dat=%3Cproquest_cross%3E2449451157%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449451157&rft_id=info:pmid/&rfr_iscdi=true |