Potential of generative adversarial net algorithms in image and video processing applications– a survey

Generative Adversarial Network (GAN) has gained eminence in a very short period as it can learn deep data distributions with the help of a competitive process among two networks. GANs can synthesize images/videos from latent noise with a minimized adversarial cost function. The cost function plays a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2020-10, Vol.79 (37-38), p.27407-27437
Hauptverfasser: Sharma, Akanksha, Jindal, Neeru, Rana, P. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27437
container_issue 37-38
container_start_page 27407
container_title Multimedia tools and applications
container_volume 79
creator Sharma, Akanksha
Jindal, Neeru
Rana, P. S.
description Generative Adversarial Network (GAN) has gained eminence in a very short period as it can learn deep data distributions with the help of a competitive process among two networks. GANs can synthesize images/videos from latent noise with a minimized adversarial cost function. The cost function plays a deciding factor in GAN training and thus, it is often subjected to new modifications to yield better performance. To date, numerous new GAN models have been proposed owing to changes in cost function according to applications. The main objective of this research paper is to present a gist of major GAN publications and developments in image and video field. Several publications were selected after carrying out a thorough literature survey. Beginning from trends in GAN research publications, basics, literature survey, databases for performance evaluation parameters are presented under one umbrella.
doi_str_mv 10.1007/s11042-020-09308-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2449451030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2449451030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-e69956662159761838484d858815d539dab491e60bae0ac94b2d73cf52aa352e3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhSMEEqVwAVaWWAfGf4m9RBV_UiVYwNpyk0lwlTrFTiN1xx24ISfBECR2rGak-d6bmZdl5xQuKUB5FSkFwXJgkIPmoHJxkM2oLHlelowepp4ryEsJ9Dg7iXENQAvJxCxzT_2AfnC2I31DWvQY7OBGJLYeMUQbviceB2K7tg9ueN1E4jxxG9smxtdkdDX2ZBv6CmN0viV2u-1clUx6Hz_fP4glcRdG3J9mR43tIp791nn2cnvzvLjPl493D4vrZV7xohxyLLSWRVEwKnVZUMWVUKJWUikqa8l1bVdCUyxgZRFspcWK1SWvGsms5ZIhn2cXk2-66W2HcTDrfhd8WmmYEFpIChwSxSaqCn2MARuzDempsDcUzHekZorUpEjNT6RGJBGfRDHBvsXwZ_2P6gufCnrN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449451030</pqid></control><display><type>article</type><title>Potential of generative adversarial net algorithms in image and video processing applications– a survey</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sharma, Akanksha ; Jindal, Neeru ; Rana, P. S.</creator><creatorcontrib>Sharma, Akanksha ; Jindal, Neeru ; Rana, P. S.</creatorcontrib><description>Generative Adversarial Network (GAN) has gained eminence in a very short period as it can learn deep data distributions with the help of a competitive process among two networks. GANs can synthesize images/videos from latent noise with a minimized adversarial cost function. The cost function plays a deciding factor in GAN training and thus, it is often subjected to new modifications to yield better performance. To date, numerous new GAN models have been proposed owing to changes in cost function according to applications. The main objective of this research paper is to present a gist of major GAN publications and developments in image and video field. Several publications were selected after carrying out a thorough literature survey. Beginning from trends in GAN research publications, basics, literature survey, databases for performance evaluation parameters are presented under one umbrella.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-020-09308-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computer Communication Networks ; Computer Science ; Cost function ; Data Structures and Information Theory ; Documents ; Image processing ; Literature reviews ; Multimedia Information Systems ; Performance evaluation ; Scientific papers ; Special Purpose and Application-Based Systems ; Video</subject><ispartof>Multimedia tools and applications, 2020-10, Vol.79 (37-38), p.27407-27437</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-e69956662159761838484d858815d539dab491e60bae0ac94b2d73cf52aa352e3</citedby><cites>FETCH-LOGICAL-c367t-e69956662159761838484d858815d539dab491e60bae0ac94b2d73cf52aa352e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-020-09308-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-020-09308-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Sharma, Akanksha</creatorcontrib><creatorcontrib>Jindal, Neeru</creatorcontrib><creatorcontrib>Rana, P. S.</creatorcontrib><title>Potential of generative adversarial net algorithms in image and video processing applications– a survey</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Generative Adversarial Network (GAN) has gained eminence in a very short period as it can learn deep data distributions with the help of a competitive process among two networks. GANs can synthesize images/videos from latent noise with a minimized adversarial cost function. The cost function plays a deciding factor in GAN training and thus, it is often subjected to new modifications to yield better performance. To date, numerous new GAN models have been proposed owing to changes in cost function according to applications. The main objective of this research paper is to present a gist of major GAN publications and developments in image and video field. Several publications were selected after carrying out a thorough literature survey. Beginning from trends in GAN research publications, basics, literature survey, databases for performance evaluation parameters are presented under one umbrella.</description><subject>Algorithms</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Cost function</subject><subject>Data Structures and Information Theory</subject><subject>Documents</subject><subject>Image processing</subject><subject>Literature reviews</subject><subject>Multimedia Information Systems</subject><subject>Performance evaluation</subject><subject>Scientific papers</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Video</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1OwzAQhSMEEqVwAVaWWAfGf4m9RBV_UiVYwNpyk0lwlTrFTiN1xx24ISfBECR2rGak-d6bmZdl5xQuKUB5FSkFwXJgkIPmoHJxkM2oLHlelowepp4ryEsJ9Dg7iXENQAvJxCxzT_2AfnC2I31DWvQY7OBGJLYeMUQbviceB2K7tg9ueN1E4jxxG9smxtdkdDX2ZBv6CmN0viV2u-1clUx6Hz_fP4glcRdG3J9mR43tIp791nn2cnvzvLjPl493D4vrZV7xohxyLLSWRVEwKnVZUMWVUKJWUikqa8l1bVdCUyxgZRFspcWK1SWvGsms5ZIhn2cXk2-66W2HcTDrfhd8WmmYEFpIChwSxSaqCn2MARuzDempsDcUzHekZorUpEjNT6RGJBGfRDHBvsXwZ_2P6gufCnrN</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Sharma, Akanksha</creator><creator>Jindal, Neeru</creator><creator>Rana, P. S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20201001</creationdate><title>Potential of generative adversarial net algorithms in image and video processing applications– a survey</title><author>Sharma, Akanksha ; Jindal, Neeru ; Rana, P. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-e69956662159761838484d858815d539dab491e60bae0ac94b2d73cf52aa352e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Cost function</topic><topic>Data Structures and Information Theory</topic><topic>Documents</topic><topic>Image processing</topic><topic>Literature reviews</topic><topic>Multimedia Information Systems</topic><topic>Performance evaluation</topic><topic>Scientific papers</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Video</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Akanksha</creatorcontrib><creatorcontrib>Jindal, Neeru</creatorcontrib><creatorcontrib>Rana, P. S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Akanksha</au><au>Jindal, Neeru</au><au>Rana, P. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Potential of generative adversarial net algorithms in image and video processing applications– a survey</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>79</volume><issue>37-38</issue><spage>27407</spage><epage>27437</epage><pages>27407-27437</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Generative Adversarial Network (GAN) has gained eminence in a very short period as it can learn deep data distributions with the help of a competitive process among two networks. GANs can synthesize images/videos from latent noise with a minimized adversarial cost function. The cost function plays a deciding factor in GAN training and thus, it is often subjected to new modifications to yield better performance. To date, numerous new GAN models have been proposed owing to changes in cost function according to applications. The main objective of this research paper is to present a gist of major GAN publications and developments in image and video field. Several publications were selected after carrying out a thorough literature survey. Beginning from trends in GAN research publications, basics, literature survey, databases for performance evaluation parameters are presented under one umbrella.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-020-09308-4</doi><tpages>31</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2020-10, Vol.79 (37-38), p.27407-27437
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2449451030
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Computer Communication Networks
Computer Science
Cost function
Data Structures and Information Theory
Documents
Image processing
Literature reviews
Multimedia Information Systems
Performance evaluation
Scientific papers
Special Purpose and Application-Based Systems
Video
title Potential of generative adversarial net algorithms in image and video processing applications– a survey
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A27%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Potential%20of%20generative%20adversarial%20net%20algorithms%20in%20image%20and%20video%20processing%20applications%E2%80%93%20a%20survey&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Sharma,%20Akanksha&rft.date=2020-10-01&rft.volume=79&rft.issue=37-38&rft.spage=27407&rft.epage=27437&rft.pages=27407-27437&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-020-09308-4&rft_dat=%3Cproquest_cross%3E2449451030%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449451030&rft_id=info:pmid/&rfr_iscdi=true