Potential of generative adversarial net algorithms in image and video processing applications– a survey
Generative Adversarial Network (GAN) has gained eminence in a very short period as it can learn deep data distributions with the help of a competitive process among two networks. GANs can synthesize images/videos from latent noise with a minimized adversarial cost function. The cost function plays a...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2020-10, Vol.79 (37-38), p.27407-27437 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27437 |
---|---|
container_issue | 37-38 |
container_start_page | 27407 |
container_title | Multimedia tools and applications |
container_volume | 79 |
creator | Sharma, Akanksha Jindal, Neeru Rana, P. S. |
description | Generative Adversarial Network (GAN) has gained eminence in a very short period as it can learn deep data distributions with the help of a competitive process among two networks. GANs can synthesize images/videos from latent noise with a minimized adversarial cost function. The cost function plays a deciding factor in GAN training and thus, it is often subjected to new modifications to yield better performance. To date, numerous new GAN models have been proposed owing to changes in cost function according to applications. The main objective of this research paper is to present a gist of major GAN publications and developments in image and video field. Several publications were selected after carrying out a thorough literature survey. Beginning from trends in GAN research publications, basics, literature survey, databases for performance evaluation parameters are presented under one umbrella. |
doi_str_mv | 10.1007/s11042-020-09308-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2449451030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2449451030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-e69956662159761838484d858815d539dab491e60bae0ac94b2d73cf52aa352e3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhSMEEqVwAVaWWAfGf4m9RBV_UiVYwNpyk0lwlTrFTiN1xx24ISfBECR2rGak-d6bmZdl5xQuKUB5FSkFwXJgkIPmoHJxkM2oLHlelowepp4ryEsJ9Dg7iXENQAvJxCxzT_2AfnC2I31DWvQY7OBGJLYeMUQbviceB2K7tg9ueN1E4jxxG9smxtdkdDX2ZBv6CmN0viV2u-1clUx6Hz_fP4glcRdG3J9mR43tIp791nn2cnvzvLjPl493D4vrZV7xohxyLLSWRVEwKnVZUMWVUKJWUikqa8l1bVdCUyxgZRFspcWK1SWvGsms5ZIhn2cXk2-66W2HcTDrfhd8WmmYEFpIChwSxSaqCn2MARuzDempsDcUzHekZorUpEjNT6RGJBGfRDHBvsXwZ_2P6gufCnrN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449451030</pqid></control><display><type>article</type><title>Potential of generative adversarial net algorithms in image and video processing applications– a survey</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sharma, Akanksha ; Jindal, Neeru ; Rana, P. S.</creator><creatorcontrib>Sharma, Akanksha ; Jindal, Neeru ; Rana, P. S.</creatorcontrib><description>Generative Adversarial Network (GAN) has gained eminence in a very short period as it can learn deep data distributions with the help of a competitive process among two networks. GANs can synthesize images/videos from latent noise with a minimized adversarial cost function. The cost function plays a deciding factor in GAN training and thus, it is often subjected to new modifications to yield better performance. To date, numerous new GAN models have been proposed owing to changes in cost function according to applications. The main objective of this research paper is to present a gist of major GAN publications and developments in image and video field. Several publications were selected after carrying out a thorough literature survey. Beginning from trends in GAN research publications, basics, literature survey, databases for performance evaluation parameters are presented under one umbrella.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-020-09308-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computer Communication Networks ; Computer Science ; Cost function ; Data Structures and Information Theory ; Documents ; Image processing ; Literature reviews ; Multimedia Information Systems ; Performance evaluation ; Scientific papers ; Special Purpose and Application-Based Systems ; Video</subject><ispartof>Multimedia tools and applications, 2020-10, Vol.79 (37-38), p.27407-27437</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-e69956662159761838484d858815d539dab491e60bae0ac94b2d73cf52aa352e3</citedby><cites>FETCH-LOGICAL-c367t-e69956662159761838484d858815d539dab491e60bae0ac94b2d73cf52aa352e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-020-09308-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-020-09308-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Sharma, Akanksha</creatorcontrib><creatorcontrib>Jindal, Neeru</creatorcontrib><creatorcontrib>Rana, P. S.</creatorcontrib><title>Potential of generative adversarial net algorithms in image and video processing applications– a survey</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Generative Adversarial Network (GAN) has gained eminence in a very short period as it can learn deep data distributions with the help of a competitive process among two networks. GANs can synthesize images/videos from latent noise with a minimized adversarial cost function. The cost function plays a deciding factor in GAN training and thus, it is often subjected to new modifications to yield better performance. To date, numerous new GAN models have been proposed owing to changes in cost function according to applications. The main objective of this research paper is to present a gist of major GAN publications and developments in image and video field. Several publications were selected after carrying out a thorough literature survey. Beginning from trends in GAN research publications, basics, literature survey, databases for performance evaluation parameters are presented under one umbrella.</description><subject>Algorithms</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Cost function</subject><subject>Data Structures and Information Theory</subject><subject>Documents</subject><subject>Image processing</subject><subject>Literature reviews</subject><subject>Multimedia Information Systems</subject><subject>Performance evaluation</subject><subject>Scientific papers</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Video</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1OwzAQhSMEEqVwAVaWWAfGf4m9RBV_UiVYwNpyk0lwlTrFTiN1xx24ISfBECR2rGak-d6bmZdl5xQuKUB5FSkFwXJgkIPmoHJxkM2oLHlelowepp4ryEsJ9Dg7iXENQAvJxCxzT_2AfnC2I31DWvQY7OBGJLYeMUQbviceB2K7tg9ueN1E4jxxG9smxtdkdDX2ZBv6CmN0viV2u-1clUx6Hz_fP4glcRdG3J9mR43tIp791nn2cnvzvLjPl493D4vrZV7xohxyLLSWRVEwKnVZUMWVUKJWUikqa8l1bVdCUyxgZRFspcWK1SWvGsms5ZIhn2cXk2-66W2HcTDrfhd8WmmYEFpIChwSxSaqCn2MARuzDempsDcUzHekZorUpEjNT6RGJBGfRDHBvsXwZ_2P6gufCnrN</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Sharma, Akanksha</creator><creator>Jindal, Neeru</creator><creator>Rana, P. S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20201001</creationdate><title>Potential of generative adversarial net algorithms in image and video processing applications– a survey</title><author>Sharma, Akanksha ; Jindal, Neeru ; Rana, P. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-e69956662159761838484d858815d539dab491e60bae0ac94b2d73cf52aa352e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Cost function</topic><topic>Data Structures and Information Theory</topic><topic>Documents</topic><topic>Image processing</topic><topic>Literature reviews</topic><topic>Multimedia Information Systems</topic><topic>Performance evaluation</topic><topic>Scientific papers</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Video</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Akanksha</creatorcontrib><creatorcontrib>Jindal, Neeru</creatorcontrib><creatorcontrib>Rana, P. S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Akanksha</au><au>Jindal, Neeru</au><au>Rana, P. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Potential of generative adversarial net algorithms in image and video processing applications– a survey</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>79</volume><issue>37-38</issue><spage>27407</spage><epage>27437</epage><pages>27407-27437</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Generative Adversarial Network (GAN) has gained eminence in a very short period as it can learn deep data distributions with the help of a competitive process among two networks. GANs can synthesize images/videos from latent noise with a minimized adversarial cost function. The cost function plays a deciding factor in GAN training and thus, it is often subjected to new modifications to yield better performance. To date, numerous new GAN models have been proposed owing to changes in cost function according to applications. The main objective of this research paper is to present a gist of major GAN publications and developments in image and video field. Several publications were selected after carrying out a thorough literature survey. Beginning from trends in GAN research publications, basics, literature survey, databases for performance evaluation parameters are presented under one umbrella.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-020-09308-4</doi><tpages>31</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2020-10, Vol.79 (37-38), p.27407-27437 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2449451030 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Computer Communication Networks Computer Science Cost function Data Structures and Information Theory Documents Image processing Literature reviews Multimedia Information Systems Performance evaluation Scientific papers Special Purpose and Application-Based Systems Video |
title | Potential of generative adversarial net algorithms in image and video processing applications– a survey |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A27%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Potential%20of%20generative%20adversarial%20net%20algorithms%20in%20image%20and%20video%20processing%20applications%E2%80%93%20a%20survey&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Sharma,%20Akanksha&rft.date=2020-10-01&rft.volume=79&rft.issue=37-38&rft.spage=27407&rft.epage=27437&rft.pages=27407-27437&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-020-09308-4&rft_dat=%3Cproquest_cross%3E2449451030%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449451030&rft_id=info:pmid/&rfr_iscdi=true |