Hypergraph Models of Biological Networks to Identify Genes Critical to Pathogenic Viral Response

Background: Representing biological networks as graphs is a powerful approach to reveal underlying patterns, signatures, and critical components from high-throughput biomolecular data. However, graphs do not natively capture the multi-way relationships present among genes and proteins in biological...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-10
Hauptverfasser: Song, Feng, Heath, Emily, Jefferson, Brett, Joslyn, Cliff, Kvinge, Henry, Mitchell, Hugh D, Praggastis, Brenda, Eisfeld, Amie J, Sims, Amy C, Thackray, Larissa B, Fan, Shufang, Walters, Kevin B, Halfmann, Peter J, Westhoff-Smith, Danielle, Tan, Qing, Menachery, Vineet D, Sheahan, Timothy P, Cockrell, Adam S, Kocher, Jacob F, Stratton, Kelly G, Heller, Natalie C, Bramer, Lisa M, Diamond, Michael S, Baric, Ralph S, Waters, Katrina M, Kawaoka, Yoshihiro, McDermott, Jason E, Purvine, Emilie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Song, Feng
Heath, Emily
Jefferson, Brett
Joslyn, Cliff
Kvinge, Henry
Mitchell, Hugh D
Praggastis, Brenda
Eisfeld, Amie J
Sims, Amy C
Thackray, Larissa B
Fan, Shufang
Walters, Kevin B
Halfmann, Peter J
Westhoff-Smith, Danielle
Tan, Qing
Menachery, Vineet D
Sheahan, Timothy P
Cockrell, Adam S
Kocher, Jacob F
Stratton, Kelly G
Heller, Natalie C
Bramer, Lisa M
Diamond, Michael S
Baric, Ralph S
Waters, Katrina M
Kawaoka, Yoshihiro
McDermott, Jason E
Purvine, Emilie
description Background: Representing biological networks as graphs is a powerful approach to reveal underlying patterns, signatures, and critical components from high-throughput biomolecular data. However, graphs do not natively capture the multi-way relationships present among genes and proteins in biological systems. Hypergraphs are generalizations of graphs that naturally model multi-way relationships and have shown promise in modeling systems such as protein complexes and metabolic reactions. In this paper we seek to understand how hypergraphs can more faithfully identify, and potentially predict, important genes based on complex relationships inferred from genomic expression data sets. Results: We compiled a novel data set of transcriptional host response to pathogenic viral infections and formulated relationships between genes as a hypergraph where hyperedges represent significantly perturbed genes, and vertices represent individual biological samples with specific experimental conditions. We find that hypergraph betweenness centrality is a superior method for identification of genes important to viral response when compared with graph centrality. Conclusions: Our results demonstrate the utility of using hypergraphs to represent complex biological systems and highlight central important responses in common to a variety of highly pathogenic viruses.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2449345280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2449345280</sourcerecordid><originalsourceid>FETCH-proquest_journals_24493452803</originalsourceid><addsrcrecordid>eNqNissKwjAQAIMgKOo_LHgWYtJqvSq-DoqIeNXQbttoydZsRPx7i_gBngZmpiW6SuvxKImU6ogB801KqSZTFce6K66bd42-8KYuYUcZVgyUw9xSRYVNTQV7DC_yd4ZAsM3QBZu_YY0OGRbehu_TpIMJJRXobApn6xt3RK7JMfZFOzcV4-DHnhiulqfFZlR7ejyRw-VGT--adFFRNNNRrBKp_7s-4IZEyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449345280</pqid></control><display><type>article</type><title>Hypergraph Models of Biological Networks to Identify Genes Critical to Pathogenic Viral Response</title><source>Free E- Journals</source><creator>Song, Feng ; Heath, Emily ; Jefferson, Brett ; Joslyn, Cliff ; Kvinge, Henry ; Mitchell, Hugh D ; Praggastis, Brenda ; Eisfeld, Amie J ; Sims, Amy C ; Thackray, Larissa B ; Fan, Shufang ; Walters, Kevin B ; Halfmann, Peter J ; Westhoff-Smith, Danielle ; Tan, Qing ; Menachery, Vineet D ; Sheahan, Timothy P ; Cockrell, Adam S ; Kocher, Jacob F ; Stratton, Kelly G ; Heller, Natalie C ; Bramer, Lisa M ; Diamond, Michael S ; Baric, Ralph S ; Waters, Katrina M ; Kawaoka, Yoshihiro ; McDermott, Jason E ; Purvine, Emilie</creator><creatorcontrib>Song, Feng ; Heath, Emily ; Jefferson, Brett ; Joslyn, Cliff ; Kvinge, Henry ; Mitchell, Hugh D ; Praggastis, Brenda ; Eisfeld, Amie J ; Sims, Amy C ; Thackray, Larissa B ; Fan, Shufang ; Walters, Kevin B ; Halfmann, Peter J ; Westhoff-Smith, Danielle ; Tan, Qing ; Menachery, Vineet D ; Sheahan, Timothy P ; Cockrell, Adam S ; Kocher, Jacob F ; Stratton, Kelly G ; Heller, Natalie C ; Bramer, Lisa M ; Diamond, Michael S ; Baric, Ralph S ; Waters, Katrina M ; Kawaoka, Yoshihiro ; McDermott, Jason E ; Purvine, Emilie</creatorcontrib><description>Background: Representing biological networks as graphs is a powerful approach to reveal underlying patterns, signatures, and critical components from high-throughput biomolecular data. However, graphs do not natively capture the multi-way relationships present among genes and proteins in biological systems. Hypergraphs are generalizations of graphs that naturally model multi-way relationships and have shown promise in modeling systems such as protein complexes and metabolic reactions. In this paper we seek to understand how hypergraphs can more faithfully identify, and potentially predict, important genes based on complex relationships inferred from genomic expression data sets. Results: We compiled a novel data set of transcriptional host response to pathogenic viral infections and formulated relationships between genes as a hypergraph where hyperedges represent significantly perturbed genes, and vertices represent individual biological samples with specific experimental conditions. We find that hypergraph betweenness centrality is a superior method for identification of genes important to viral response when compared with graph centrality. Conclusions: Our results demonstrate the utility of using hypergraphs to represent complex biological systems and highlight central important responses in common to a variety of highly pathogenic viruses.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Apexes ; Biological properties ; Critical components ; Datasets ; Gene expression ; Genes ; Graph theory ; Graphical representations ; Graphs ; Proteins</subject><ispartof>arXiv.org, 2020-10</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Song, Feng</creatorcontrib><creatorcontrib>Heath, Emily</creatorcontrib><creatorcontrib>Jefferson, Brett</creatorcontrib><creatorcontrib>Joslyn, Cliff</creatorcontrib><creatorcontrib>Kvinge, Henry</creatorcontrib><creatorcontrib>Mitchell, Hugh D</creatorcontrib><creatorcontrib>Praggastis, Brenda</creatorcontrib><creatorcontrib>Eisfeld, Amie J</creatorcontrib><creatorcontrib>Sims, Amy C</creatorcontrib><creatorcontrib>Thackray, Larissa B</creatorcontrib><creatorcontrib>Fan, Shufang</creatorcontrib><creatorcontrib>Walters, Kevin B</creatorcontrib><creatorcontrib>Halfmann, Peter J</creatorcontrib><creatorcontrib>Westhoff-Smith, Danielle</creatorcontrib><creatorcontrib>Tan, Qing</creatorcontrib><creatorcontrib>Menachery, Vineet D</creatorcontrib><creatorcontrib>Sheahan, Timothy P</creatorcontrib><creatorcontrib>Cockrell, Adam S</creatorcontrib><creatorcontrib>Kocher, Jacob F</creatorcontrib><creatorcontrib>Stratton, Kelly G</creatorcontrib><creatorcontrib>Heller, Natalie C</creatorcontrib><creatorcontrib>Bramer, Lisa M</creatorcontrib><creatorcontrib>Diamond, Michael S</creatorcontrib><creatorcontrib>Baric, Ralph S</creatorcontrib><creatorcontrib>Waters, Katrina M</creatorcontrib><creatorcontrib>Kawaoka, Yoshihiro</creatorcontrib><creatorcontrib>McDermott, Jason E</creatorcontrib><creatorcontrib>Purvine, Emilie</creatorcontrib><title>Hypergraph Models of Biological Networks to Identify Genes Critical to Pathogenic Viral Response</title><title>arXiv.org</title><description>Background: Representing biological networks as graphs is a powerful approach to reveal underlying patterns, signatures, and critical components from high-throughput biomolecular data. However, graphs do not natively capture the multi-way relationships present among genes and proteins in biological systems. Hypergraphs are generalizations of graphs that naturally model multi-way relationships and have shown promise in modeling systems such as protein complexes and metabolic reactions. In this paper we seek to understand how hypergraphs can more faithfully identify, and potentially predict, important genes based on complex relationships inferred from genomic expression data sets. Results: We compiled a novel data set of transcriptional host response to pathogenic viral infections and formulated relationships between genes as a hypergraph where hyperedges represent significantly perturbed genes, and vertices represent individual biological samples with specific experimental conditions. We find that hypergraph betweenness centrality is a superior method for identification of genes important to viral response when compared with graph centrality. Conclusions: Our results demonstrate the utility of using hypergraphs to represent complex biological systems and highlight central important responses in common to a variety of highly pathogenic viruses.</description><subject>Apexes</subject><subject>Biological properties</subject><subject>Critical components</subject><subject>Datasets</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Graph theory</subject><subject>Graphical representations</subject><subject>Graphs</subject><subject>Proteins</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNissKwjAQAIMgKOo_LHgWYtJqvSq-DoqIeNXQbttoydZsRPx7i_gBngZmpiW6SuvxKImU6ogB801KqSZTFce6K66bd42-8KYuYUcZVgyUw9xSRYVNTQV7DC_yd4ZAsM3QBZu_YY0OGRbehu_TpIMJJRXobApn6xt3RK7JMfZFOzcV4-DHnhiulqfFZlR7ejyRw-VGT--adFFRNNNRrBKp_7s-4IZEyg</recordid><startdate>20201006</startdate><enddate>20201006</enddate><creator>Song, Feng</creator><creator>Heath, Emily</creator><creator>Jefferson, Brett</creator><creator>Joslyn, Cliff</creator><creator>Kvinge, Henry</creator><creator>Mitchell, Hugh D</creator><creator>Praggastis, Brenda</creator><creator>Eisfeld, Amie J</creator><creator>Sims, Amy C</creator><creator>Thackray, Larissa B</creator><creator>Fan, Shufang</creator><creator>Walters, Kevin B</creator><creator>Halfmann, Peter J</creator><creator>Westhoff-Smith, Danielle</creator><creator>Tan, Qing</creator><creator>Menachery, Vineet D</creator><creator>Sheahan, Timothy P</creator><creator>Cockrell, Adam S</creator><creator>Kocher, Jacob F</creator><creator>Stratton, Kelly G</creator><creator>Heller, Natalie C</creator><creator>Bramer, Lisa M</creator><creator>Diamond, Michael S</creator><creator>Baric, Ralph S</creator><creator>Waters, Katrina M</creator><creator>Kawaoka, Yoshihiro</creator><creator>McDermott, Jason E</creator><creator>Purvine, Emilie</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201006</creationdate><title>Hypergraph Models of Biological Networks to Identify Genes Critical to Pathogenic Viral Response</title><author>Song, Feng ; Heath, Emily ; Jefferson, Brett ; Joslyn, Cliff ; Kvinge, Henry ; Mitchell, Hugh D ; Praggastis, Brenda ; Eisfeld, Amie J ; Sims, Amy C ; Thackray, Larissa B ; Fan, Shufang ; Walters, Kevin B ; Halfmann, Peter J ; Westhoff-Smith, Danielle ; Tan, Qing ; Menachery, Vineet D ; Sheahan, Timothy P ; Cockrell, Adam S ; Kocher, Jacob F ; Stratton, Kelly G ; Heller, Natalie C ; Bramer, Lisa M ; Diamond, Michael S ; Baric, Ralph S ; Waters, Katrina M ; Kawaoka, Yoshihiro ; McDermott, Jason E ; Purvine, Emilie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24493452803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Apexes</topic><topic>Biological properties</topic><topic>Critical components</topic><topic>Datasets</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Graph theory</topic><topic>Graphical representations</topic><topic>Graphs</topic><topic>Proteins</topic><toplevel>online_resources</toplevel><creatorcontrib>Song, Feng</creatorcontrib><creatorcontrib>Heath, Emily</creatorcontrib><creatorcontrib>Jefferson, Brett</creatorcontrib><creatorcontrib>Joslyn, Cliff</creatorcontrib><creatorcontrib>Kvinge, Henry</creatorcontrib><creatorcontrib>Mitchell, Hugh D</creatorcontrib><creatorcontrib>Praggastis, Brenda</creatorcontrib><creatorcontrib>Eisfeld, Amie J</creatorcontrib><creatorcontrib>Sims, Amy C</creatorcontrib><creatorcontrib>Thackray, Larissa B</creatorcontrib><creatorcontrib>Fan, Shufang</creatorcontrib><creatorcontrib>Walters, Kevin B</creatorcontrib><creatorcontrib>Halfmann, Peter J</creatorcontrib><creatorcontrib>Westhoff-Smith, Danielle</creatorcontrib><creatorcontrib>Tan, Qing</creatorcontrib><creatorcontrib>Menachery, Vineet D</creatorcontrib><creatorcontrib>Sheahan, Timothy P</creatorcontrib><creatorcontrib>Cockrell, Adam S</creatorcontrib><creatorcontrib>Kocher, Jacob F</creatorcontrib><creatorcontrib>Stratton, Kelly G</creatorcontrib><creatorcontrib>Heller, Natalie C</creatorcontrib><creatorcontrib>Bramer, Lisa M</creatorcontrib><creatorcontrib>Diamond, Michael S</creatorcontrib><creatorcontrib>Baric, Ralph S</creatorcontrib><creatorcontrib>Waters, Katrina M</creatorcontrib><creatorcontrib>Kawaoka, Yoshihiro</creatorcontrib><creatorcontrib>McDermott, Jason E</creatorcontrib><creatorcontrib>Purvine, Emilie</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Feng</au><au>Heath, Emily</au><au>Jefferson, Brett</au><au>Joslyn, Cliff</au><au>Kvinge, Henry</au><au>Mitchell, Hugh D</au><au>Praggastis, Brenda</au><au>Eisfeld, Amie J</au><au>Sims, Amy C</au><au>Thackray, Larissa B</au><au>Fan, Shufang</au><au>Walters, Kevin B</au><au>Halfmann, Peter J</au><au>Westhoff-Smith, Danielle</au><au>Tan, Qing</au><au>Menachery, Vineet D</au><au>Sheahan, Timothy P</au><au>Cockrell, Adam S</au><au>Kocher, Jacob F</au><au>Stratton, Kelly G</au><au>Heller, Natalie C</au><au>Bramer, Lisa M</au><au>Diamond, Michael S</au><au>Baric, Ralph S</au><au>Waters, Katrina M</au><au>Kawaoka, Yoshihiro</au><au>McDermott, Jason E</au><au>Purvine, Emilie</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Hypergraph Models of Biological Networks to Identify Genes Critical to Pathogenic Viral Response</atitle><jtitle>arXiv.org</jtitle><date>2020-10-06</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Background: Representing biological networks as graphs is a powerful approach to reveal underlying patterns, signatures, and critical components from high-throughput biomolecular data. However, graphs do not natively capture the multi-way relationships present among genes and proteins in biological systems. Hypergraphs are generalizations of graphs that naturally model multi-way relationships and have shown promise in modeling systems such as protein complexes and metabolic reactions. In this paper we seek to understand how hypergraphs can more faithfully identify, and potentially predict, important genes based on complex relationships inferred from genomic expression data sets. Results: We compiled a novel data set of transcriptional host response to pathogenic viral infections and formulated relationships between genes as a hypergraph where hyperedges represent significantly perturbed genes, and vertices represent individual biological samples with specific experimental conditions. We find that hypergraph betweenness centrality is a superior method for identification of genes important to viral response when compared with graph centrality. Conclusions: Our results demonstrate the utility of using hypergraphs to represent complex biological systems and highlight central important responses in common to a variety of highly pathogenic viruses.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2449345280
source Free E- Journals
subjects Apexes
Biological properties
Critical components
Datasets
Gene expression
Genes
Graph theory
Graphical representations
Graphs
Proteins
title Hypergraph Models of Biological Networks to Identify Genes Critical to Pathogenic Viral Response
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A41%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Hypergraph%20Models%20of%20Biological%20Networks%20to%20Identify%20Genes%20Critical%20to%20Pathogenic%20Viral%20Response&rft.jtitle=arXiv.org&rft.au=Song,%20Feng&rft.date=2020-10-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2449345280%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449345280&rft_id=info:pmid/&rfr_iscdi=true