Adaptive Fuzzy Inverse Optimal Control for Uncertain Strict-Feedback Nonlinear Systems

This article first investigates the adaptive fuzzy inverse optimal control design problem for a class of uncertain strict-feedback nonlinear systems. Fuzzy logic systems are utilized to identify the unknown nonlinear dynamics, and then, an equivalent system and an auxiliary system are established. B...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on fuzzy systems 2020-10, Vol.28 (10), p.2363-2374
Hauptverfasser: Li, Yong-ming, Min, Xiao, Tong, Shaocheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2374
container_issue 10
container_start_page 2363
container_title IEEE transactions on fuzzy systems
container_volume 28
creator Li, Yong-ming
Min, Xiao
Tong, Shaocheng
description This article first investigates the adaptive fuzzy inverse optimal control design problem for a class of uncertain strict-feedback nonlinear systems. Fuzzy logic systems are utilized to identify the unknown nonlinear dynamics, and then, an equivalent system and an auxiliary system are established. Based on the auxiliary system and using backstepping recursive design algorithm, an adaptive fuzzy inverse optimal scheme, associating with a meaningful objective functional, is developed. It is proved that the presented adaptive fuzzy inverse optimal control scheme can guarantee that the considered system is input-to-state stabilizable and also achieves the goal of inverse optimality with respect to the cost functional. Finally, the simulation studies and comparisons via two examples are provided to confirm the validity of the developed control strategy.
doi_str_mv 10.1109/TFUZZ.2019.2935693
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2449315453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8801925</ieee_id><sourcerecordid>2449315453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-99a083ff4f91b9fc681f59af78726cf1a0398765a01b73f4014db7cf76cb20873</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYj-Ab008bzYj-3XkRBXSYgcAA9cmm5pk0XYxbaQwK-3iPE0k8n7zrzzAPCI0QBjpF7m1WK5HBCE1YAoyriiV6CHVYkLhGh5nXvEacEF4rfgLsY1QrhkWPbA53Bldqk5OFjtT6cjHLcHF6KD0zzcmg0cdW0K3Qb6LsBFa11IpmnhLIXGpqJyblUb-wU_unbTtM4EODvG5LbxHtx4s4nu4a_2waJ6nY_ei8n0bTwaTgpLFEuFUgZJ6n3pFa6Vt1xiz5TxQgrCrccGUSUFZwbhWlBf5tSrWlgvuK0JkoL2wfNl7y5033sXk153-9Dmk5qUpaKYlYxmFbmobOhiDM7rXcjfhaPGSJ_56V9--sxP__HLpqeLqXHO_RukzBrC6A9CO2yF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449315453</pqid></control><display><type>article</type><title>Adaptive Fuzzy Inverse Optimal Control for Uncertain Strict-Feedback Nonlinear Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Yong-ming ; Min, Xiao ; Tong, Shaocheng</creator><creatorcontrib>Li, Yong-ming ; Min, Xiao ; Tong, Shaocheng</creatorcontrib><description>This article first investigates the adaptive fuzzy inverse optimal control design problem for a class of uncertain strict-feedback nonlinear systems. Fuzzy logic systems are utilized to identify the unknown nonlinear dynamics, and then, an equivalent system and an auxiliary system are established. Based on the auxiliary system and using backstepping recursive design algorithm, an adaptive fuzzy inverse optimal scheme, associating with a meaningful objective functional, is developed. It is proved that the presented adaptive fuzzy inverse optimal control scheme can guarantee that the considered system is input-to-state stabilizable and also achieves the goal of inverse optimality with respect to the cost functional. Finally, the simulation studies and comparisons via two examples are provided to confirm the validity of the developed control strategy.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2019.2935693</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive algorithms ; Adaptive control ; Adaptive fuzzy control ; Adaptive systems ; Approximation error ; Backstepping ; Dynamical systems ; Feedback ; Fuzzy control ; Fuzzy logic ; Fuzzy systems ; inverse optimal control ; Nonlinear control ; Nonlinear dynamics ; Nonlinear systems ; Optimal control ; Optimization ; strict-feedback ; uncertain nonlinear systems</subject><ispartof>IEEE transactions on fuzzy systems, 2020-10, Vol.28 (10), p.2363-2374</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-99a083ff4f91b9fc681f59af78726cf1a0398765a01b73f4014db7cf76cb20873</citedby><cites>FETCH-LOGICAL-c295t-99a083ff4f91b9fc681f59af78726cf1a0398765a01b73f4014db7cf76cb20873</cites><orcidid>0000-0002-4690-7287 ; 0000-0002-5258-2765</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8801925$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8801925$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Yong-ming</creatorcontrib><creatorcontrib>Min, Xiao</creatorcontrib><creatorcontrib>Tong, Shaocheng</creatorcontrib><title>Adaptive Fuzzy Inverse Optimal Control for Uncertain Strict-Feedback Nonlinear Systems</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>This article first investigates the adaptive fuzzy inverse optimal control design problem for a class of uncertain strict-feedback nonlinear systems. Fuzzy logic systems are utilized to identify the unknown nonlinear dynamics, and then, an equivalent system and an auxiliary system are established. Based on the auxiliary system and using backstepping recursive design algorithm, an adaptive fuzzy inverse optimal scheme, associating with a meaningful objective functional, is developed. It is proved that the presented adaptive fuzzy inverse optimal control scheme can guarantee that the considered system is input-to-state stabilizable and also achieves the goal of inverse optimality with respect to the cost functional. Finally, the simulation studies and comparisons via two examples are provided to confirm the validity of the developed control strategy.</description><subject>Adaptive algorithms</subject><subject>Adaptive control</subject><subject>Adaptive fuzzy control</subject><subject>Adaptive systems</subject><subject>Approximation error</subject><subject>Backstepping</subject><subject>Dynamical systems</subject><subject>Feedback</subject><subject>Fuzzy control</subject><subject>Fuzzy logic</subject><subject>Fuzzy systems</subject><subject>inverse optimal control</subject><subject>Nonlinear control</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>strict-feedback</subject><subject>uncertain nonlinear systems</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhhujiYj-Ab008bzYj-3XkRBXSYgcAA9cmm5pk0XYxbaQwK-3iPE0k8n7zrzzAPCI0QBjpF7m1WK5HBCE1YAoyriiV6CHVYkLhGh5nXvEacEF4rfgLsY1QrhkWPbA53Bldqk5OFjtT6cjHLcHF6KD0zzcmg0cdW0K3Qb6LsBFa11IpmnhLIXGpqJyblUb-wU_unbTtM4EODvG5LbxHtx4s4nu4a_2waJ6nY_ei8n0bTwaTgpLFEuFUgZJ6n3pFa6Vt1xiz5TxQgrCrccGUSUFZwbhWlBf5tSrWlgvuK0JkoL2wfNl7y5033sXk153-9Dmk5qUpaKYlYxmFbmobOhiDM7rXcjfhaPGSJ_56V9--sxP__HLpqeLqXHO_RukzBrC6A9CO2yF</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Li, Yong-ming</creator><creator>Min, Xiao</creator><creator>Tong, Shaocheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4690-7287</orcidid><orcidid>https://orcid.org/0000-0002-5258-2765</orcidid></search><sort><creationdate>20201001</creationdate><title>Adaptive Fuzzy Inverse Optimal Control for Uncertain Strict-Feedback Nonlinear Systems</title><author>Li, Yong-ming ; Min, Xiao ; Tong, Shaocheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-99a083ff4f91b9fc681f59af78726cf1a0398765a01b73f4014db7cf76cb20873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive control</topic><topic>Adaptive fuzzy control</topic><topic>Adaptive systems</topic><topic>Approximation error</topic><topic>Backstepping</topic><topic>Dynamical systems</topic><topic>Feedback</topic><topic>Fuzzy control</topic><topic>Fuzzy logic</topic><topic>Fuzzy systems</topic><topic>inverse optimal control</topic><topic>Nonlinear control</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>strict-feedback</topic><topic>uncertain nonlinear systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yong-ming</creatorcontrib><creatorcontrib>Min, Xiao</creatorcontrib><creatorcontrib>Tong, Shaocheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Yong-ming</au><au>Min, Xiao</au><au>Tong, Shaocheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Fuzzy Inverse Optimal Control for Uncertain Strict-Feedback Nonlinear Systems</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>28</volume><issue>10</issue><spage>2363</spage><epage>2374</epage><pages>2363-2374</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>This article first investigates the adaptive fuzzy inverse optimal control design problem for a class of uncertain strict-feedback nonlinear systems. Fuzzy logic systems are utilized to identify the unknown nonlinear dynamics, and then, an equivalent system and an auxiliary system are established. Based on the auxiliary system and using backstepping recursive design algorithm, an adaptive fuzzy inverse optimal scheme, associating with a meaningful objective functional, is developed. It is proved that the presented adaptive fuzzy inverse optimal control scheme can guarantee that the considered system is input-to-state stabilizable and also achieves the goal of inverse optimality with respect to the cost functional. Finally, the simulation studies and comparisons via two examples are provided to confirm the validity of the developed control strategy.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TFUZZ.2019.2935693</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4690-7287</orcidid><orcidid>https://orcid.org/0000-0002-5258-2765</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6706
ispartof IEEE transactions on fuzzy systems, 2020-10, Vol.28 (10), p.2363-2374
issn 1063-6706
1941-0034
language eng
recordid cdi_proquest_journals_2449315453
source IEEE Electronic Library (IEL)
subjects Adaptive algorithms
Adaptive control
Adaptive fuzzy control
Adaptive systems
Approximation error
Backstepping
Dynamical systems
Feedback
Fuzzy control
Fuzzy logic
Fuzzy systems
inverse optimal control
Nonlinear control
Nonlinear dynamics
Nonlinear systems
Optimal control
Optimization
strict-feedback
uncertain nonlinear systems
title Adaptive Fuzzy Inverse Optimal Control for Uncertain Strict-Feedback Nonlinear Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A43%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Fuzzy%20Inverse%20Optimal%20Control%20for%20Uncertain%20Strict-Feedback%20Nonlinear%20Systems&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Li,%20Yong-ming&rft.date=2020-10-01&rft.volume=28&rft.issue=10&rft.spage=2363&rft.epage=2374&rft.pages=2363-2374&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2019.2935693&rft_dat=%3Cproquest_RIE%3E2449315453%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449315453&rft_id=info:pmid/&rft_ieee_id=8801925&rfr_iscdi=true