A Variational Bayesian Framework for Cluster Analysis in a Complex Network

A complex network is a network with non-trivial topological structures. It contains not just topological information but also attribute information available in the rich content of nodes. Concerning the task of cluster analysis in a complex network, model-based algorithms are preferred over distance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2020-11, Vol.32 (11), p.2115-2128
Hauptverfasser: Hu, Lun, Chan, Keith C. C., Yuan, Xiaohui, Xiong, Shengwu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2128
container_issue 11
container_start_page 2115
container_title IEEE transactions on knowledge and data engineering
container_volume 32
creator Hu, Lun
Chan, Keith C. C.
Yuan, Xiaohui
Xiong, Shengwu
description A complex network is a network with non-trivial topological structures. It contains not just topological information but also attribute information available in the rich content of nodes. Concerning the task of cluster analysis in a complex network, model-based algorithms are preferred over distance-based ones, as they avoid designing specific distance measures. However, their models are only applicable to complex networks where the attribute information is composed of attributes in binary form. To overcome this disadvantage, we introduce a three-layer node-attribute-value hierarchical structure to describe the attribute information in a flexible and interpretable manner. Then, a new Bayesian model is proposed to simulate the generative process of a complex network. In this model, the attribute information is generated by following the hierarchical structure while the links between pairwise nodes are generated by a stochastic blockmodel. To solve the corresponding inference problem, we develop a variational Bayesian algorithm called TARA, which allows us to identify functionally meaningful clusters through an iterative procedure. Our extensive experiment results show that TARA can be an effective algorithm for cluster analysis in a complex network. Moreover, the parallelized version of TARA makes it possible to perform efficiently at its tasks when applied to large complex networks.
doi_str_mv 10.1109/TKDE.2019.2914200
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2449308510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8703137</ieee_id><sourcerecordid>2449308510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-19924844dd8dd49892bd40f4d323498a39e59cb2c132911d26682f586d28e0743</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEEmPwAxCXSJw77CRdk-MoG18TXAbXKGtSKaNbR9IJ9u9JtYmTbel5Lfsh5BphhAjqbvH6MB0xQDViCgUDOCEDzHOZMVR4mnoQmAkuinNyEeMKAGQhcUBeJvTTBG86325MQ-_N3kVvNnQWzNr9tOGL1m2gZbOLnQt0kph99JH6DTW0bNfbxv3SN9f15CU5q00T3dWxDsnHbLoon7L5--NzOZlnFVO8y1ApJqQQ1kprhZKKLa2AWljOeBoNVy5X1ZJVyNMraNl4LFmdy7Fl0kEh-JDcHvZuQ_u9c7HTq3YX0mVRMyEUB5kjJAoPVBXaGIOr9Tb4tQl7jaB7ZbpXpntl-qgsZW4OGe-c--dlARx5wf8A8ZhlaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449308510</pqid></control><display><type>article</type><title>A Variational Bayesian Framework for Cluster Analysis in a Complex Network</title><source>IEEE Electronic Library (IEL)</source><creator>Hu, Lun ; Chan, Keith C. C. ; Yuan, Xiaohui ; Xiong, Shengwu</creator><creatorcontrib>Hu, Lun ; Chan, Keith C. C. ; Yuan, Xiaohui ; Xiong, Shengwu</creatorcontrib><description>A complex network is a network with non-trivial topological structures. It contains not just topological information but also attribute information available in the rich content of nodes. Concerning the task of cluster analysis in a complex network, model-based algorithms are preferred over distance-based ones, as they avoid designing specific distance measures. However, their models are only applicable to complex networks where the attribute information is composed of attributes in binary form. To overcome this disadvantage, we introduce a three-layer node-attribute-value hierarchical structure to describe the attribute information in a flexible and interpretable manner. Then, a new Bayesian model is proposed to simulate the generative process of a complex network. In this model, the attribute information is generated by following the hierarchical structure while the links between pairwise nodes are generated by a stochastic blockmodel. To solve the corresponding inference problem, we develop a variational Bayesian algorithm called TARA, which allows us to identify functionally meaningful clusters through an iterative procedure. Our extensive experiment results show that TARA can be an effective algorithm for cluster analysis in a complex network. Moreover, the parallelized version of TARA makes it possible to perform efficiently at its tasks when applied to large complex networks.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2019.2914200</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Analytical models ; Bayes methods ; Bayesian analysis ; Bayesian model ; Cluster analysis ; Clustering algorithms ; Complex network ; Complex networks ; Distance measurement ; Iterative methods ; node attributes ; Nodes ; Parallel processing ; Social networking (online) ; Stochastic processes ; Structural hierarchy ; Task analysis ; Task complexity ; Topology ; variational inference</subject><ispartof>IEEE transactions on knowledge and data engineering, 2020-11, Vol.32 (11), p.2115-2128</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-19924844dd8dd49892bd40f4d323498a39e59cb2c132911d26682f586d28e0743</citedby><cites>FETCH-LOGICAL-c293t-19924844dd8dd49892bd40f4d323498a39e59cb2c132911d26682f586d28e0743</cites><orcidid>0000-0002-4006-7029 ; 0000-0002-1591-8549</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8703137$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8703137$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hu, Lun</creatorcontrib><creatorcontrib>Chan, Keith C. C.</creatorcontrib><creatorcontrib>Yuan, Xiaohui</creatorcontrib><creatorcontrib>Xiong, Shengwu</creatorcontrib><title>A Variational Bayesian Framework for Cluster Analysis in a Complex Network</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>A complex network is a network with non-trivial topological structures. It contains not just topological information but also attribute information available in the rich content of nodes. Concerning the task of cluster analysis in a complex network, model-based algorithms are preferred over distance-based ones, as they avoid designing specific distance measures. However, their models are only applicable to complex networks where the attribute information is composed of attributes in binary form. To overcome this disadvantage, we introduce a three-layer node-attribute-value hierarchical structure to describe the attribute information in a flexible and interpretable manner. Then, a new Bayesian model is proposed to simulate the generative process of a complex network. In this model, the attribute information is generated by following the hierarchical structure while the links between pairwise nodes are generated by a stochastic blockmodel. To solve the corresponding inference problem, we develop a variational Bayesian algorithm called TARA, which allows us to identify functionally meaningful clusters through an iterative procedure. Our extensive experiment results show that TARA can be an effective algorithm for cluster analysis in a complex network. Moreover, the parallelized version of TARA makes it possible to perform efficiently at its tasks when applied to large complex networks.</description><subject>Algorithms</subject><subject>Analytical models</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Bayesian model</subject><subject>Cluster analysis</subject><subject>Clustering algorithms</subject><subject>Complex network</subject><subject>Complex networks</subject><subject>Distance measurement</subject><subject>Iterative methods</subject><subject>node attributes</subject><subject>Nodes</subject><subject>Parallel processing</subject><subject>Social networking (online)</subject><subject>Stochastic processes</subject><subject>Structural hierarchy</subject><subject>Task analysis</subject><subject>Task complexity</subject><subject>Topology</subject><subject>variational inference</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwzAMhiMEEmPwAxCXSJw77CRdk-MoG18TXAbXKGtSKaNbR9IJ9u9JtYmTbel5Lfsh5BphhAjqbvH6MB0xQDViCgUDOCEDzHOZMVR4mnoQmAkuinNyEeMKAGQhcUBeJvTTBG86325MQ-_N3kVvNnQWzNr9tOGL1m2gZbOLnQt0kph99JH6DTW0bNfbxv3SN9f15CU5q00T3dWxDsnHbLoon7L5--NzOZlnFVO8y1ApJqQQ1kprhZKKLa2AWljOeBoNVy5X1ZJVyNMraNl4LFmdy7Fl0kEh-JDcHvZuQ_u9c7HTq3YX0mVRMyEUB5kjJAoPVBXaGIOr9Tb4tQl7jaB7ZbpXpntl-qgsZW4OGe-c--dlARx5wf8A8ZhlaA</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Hu, Lun</creator><creator>Chan, Keith C. C.</creator><creator>Yuan, Xiaohui</creator><creator>Xiong, Shengwu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4006-7029</orcidid><orcidid>https://orcid.org/0000-0002-1591-8549</orcidid></search><sort><creationdate>20201101</creationdate><title>A Variational Bayesian Framework for Cluster Analysis in a Complex Network</title><author>Hu, Lun ; Chan, Keith C. C. ; Yuan, Xiaohui ; Xiong, Shengwu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-19924844dd8dd49892bd40f4d323498a39e59cb2c132911d26682f586d28e0743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Analytical models</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Bayesian model</topic><topic>Cluster analysis</topic><topic>Clustering algorithms</topic><topic>Complex network</topic><topic>Complex networks</topic><topic>Distance measurement</topic><topic>Iterative methods</topic><topic>node attributes</topic><topic>Nodes</topic><topic>Parallel processing</topic><topic>Social networking (online)</topic><topic>Stochastic processes</topic><topic>Structural hierarchy</topic><topic>Task analysis</topic><topic>Task complexity</topic><topic>Topology</topic><topic>variational inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Lun</creatorcontrib><creatorcontrib>Chan, Keith C. C.</creatorcontrib><creatorcontrib>Yuan, Xiaohui</creatorcontrib><creatorcontrib>Xiong, Shengwu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hu, Lun</au><au>Chan, Keith C. C.</au><au>Yuan, Xiaohui</au><au>Xiong, Shengwu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Variational Bayesian Framework for Cluster Analysis in a Complex Network</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>32</volume><issue>11</issue><spage>2115</spage><epage>2128</epage><pages>2115-2128</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>A complex network is a network with non-trivial topological structures. It contains not just topological information but also attribute information available in the rich content of nodes. Concerning the task of cluster analysis in a complex network, model-based algorithms are preferred over distance-based ones, as they avoid designing specific distance measures. However, their models are only applicable to complex networks where the attribute information is composed of attributes in binary form. To overcome this disadvantage, we introduce a three-layer node-attribute-value hierarchical structure to describe the attribute information in a flexible and interpretable manner. Then, a new Bayesian model is proposed to simulate the generative process of a complex network. In this model, the attribute information is generated by following the hierarchical structure while the links between pairwise nodes are generated by a stochastic blockmodel. To solve the corresponding inference problem, we develop a variational Bayesian algorithm called TARA, which allows us to identify functionally meaningful clusters through an iterative procedure. Our extensive experiment results show that TARA can be an effective algorithm for cluster analysis in a complex network. Moreover, the parallelized version of TARA makes it possible to perform efficiently at its tasks when applied to large complex networks.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2019.2914200</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4006-7029</orcidid><orcidid>https://orcid.org/0000-0002-1591-8549</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2020-11, Vol.32 (11), p.2115-2128
issn 1041-4347
1558-2191
language eng
recordid cdi_proquest_journals_2449308510
source IEEE Electronic Library (IEL)
subjects Algorithms
Analytical models
Bayes methods
Bayesian analysis
Bayesian model
Cluster analysis
Clustering algorithms
Complex network
Complex networks
Distance measurement
Iterative methods
node attributes
Nodes
Parallel processing
Social networking (online)
Stochastic processes
Structural hierarchy
Task analysis
Task complexity
Topology
variational inference
title A Variational Bayesian Framework for Cluster Analysis in a Complex Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A03%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Variational%20Bayesian%20Framework%20for%20Cluster%20Analysis%20in%20a%20Complex%20Network&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Hu,%20Lun&rft.date=2020-11-01&rft.volume=32&rft.issue=11&rft.spage=2115&rft.epage=2128&rft.pages=2115-2128&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2019.2914200&rft_dat=%3Cproquest_RIE%3E2449308510%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449308510&rft_id=info:pmid/&rft_ieee_id=8703137&rfr_iscdi=true