A Variational Bayesian Framework for Cluster Analysis in a Complex Network
A complex network is a network with non-trivial topological structures. It contains not just topological information but also attribute information available in the rich content of nodes. Concerning the task of cluster analysis in a complex network, model-based algorithms are preferred over distance...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2020-11, Vol.32 (11), p.2115-2128 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2128 |
---|---|
container_issue | 11 |
container_start_page | 2115 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 32 |
creator | Hu, Lun Chan, Keith C. C. Yuan, Xiaohui Xiong, Shengwu |
description | A complex network is a network with non-trivial topological structures. It contains not just topological information but also attribute information available in the rich content of nodes. Concerning the task of cluster analysis in a complex network, model-based algorithms are preferred over distance-based ones, as they avoid designing specific distance measures. However, their models are only applicable to complex networks where the attribute information is composed of attributes in binary form. To overcome this disadvantage, we introduce a three-layer node-attribute-value hierarchical structure to describe the attribute information in a flexible and interpretable manner. Then, a new Bayesian model is proposed to simulate the generative process of a complex network. In this model, the attribute information is generated by following the hierarchical structure while the links between pairwise nodes are generated by a stochastic blockmodel. To solve the corresponding inference problem, we develop a variational Bayesian algorithm called TARA, which allows us to identify functionally meaningful clusters through an iterative procedure. Our extensive experiment results show that TARA can be an effective algorithm for cluster analysis in a complex network. Moreover, the parallelized version of TARA makes it possible to perform efficiently at its tasks when applied to large complex networks. |
doi_str_mv | 10.1109/TKDE.2019.2914200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2449308510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8703137</ieee_id><sourcerecordid>2449308510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-19924844dd8dd49892bd40f4d323498a39e59cb2c132911d26682f586d28e0743</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEEmPwAxCXSJw77CRdk-MoG18TXAbXKGtSKaNbR9IJ9u9JtYmTbel5Lfsh5BphhAjqbvH6MB0xQDViCgUDOCEDzHOZMVR4mnoQmAkuinNyEeMKAGQhcUBeJvTTBG86325MQ-_N3kVvNnQWzNr9tOGL1m2gZbOLnQt0kph99JH6DTW0bNfbxv3SN9f15CU5q00T3dWxDsnHbLoon7L5--NzOZlnFVO8y1ApJqQQ1kprhZKKLa2AWljOeBoNVy5X1ZJVyNMraNl4LFmdy7Fl0kEh-JDcHvZuQ_u9c7HTq3YX0mVRMyEUB5kjJAoPVBXaGIOr9Tb4tQl7jaB7ZbpXpntl-qgsZW4OGe-c--dlARx5wf8A8ZhlaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449308510</pqid></control><display><type>article</type><title>A Variational Bayesian Framework for Cluster Analysis in a Complex Network</title><source>IEEE Electronic Library (IEL)</source><creator>Hu, Lun ; Chan, Keith C. C. ; Yuan, Xiaohui ; Xiong, Shengwu</creator><creatorcontrib>Hu, Lun ; Chan, Keith C. C. ; Yuan, Xiaohui ; Xiong, Shengwu</creatorcontrib><description>A complex network is a network with non-trivial topological structures. It contains not just topological information but also attribute information available in the rich content of nodes. Concerning the task of cluster analysis in a complex network, model-based algorithms are preferred over distance-based ones, as they avoid designing specific distance measures. However, their models are only applicable to complex networks where the attribute information is composed of attributes in binary form. To overcome this disadvantage, we introduce a three-layer node-attribute-value hierarchical structure to describe the attribute information in a flexible and interpretable manner. Then, a new Bayesian model is proposed to simulate the generative process of a complex network. In this model, the attribute information is generated by following the hierarchical structure while the links between pairwise nodes are generated by a stochastic blockmodel. To solve the corresponding inference problem, we develop a variational Bayesian algorithm called TARA, which allows us to identify functionally meaningful clusters through an iterative procedure. Our extensive experiment results show that TARA can be an effective algorithm for cluster analysis in a complex network. Moreover, the parallelized version of TARA makes it possible to perform efficiently at its tasks when applied to large complex networks.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2019.2914200</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Analytical models ; Bayes methods ; Bayesian analysis ; Bayesian model ; Cluster analysis ; Clustering algorithms ; Complex network ; Complex networks ; Distance measurement ; Iterative methods ; node attributes ; Nodes ; Parallel processing ; Social networking (online) ; Stochastic processes ; Structural hierarchy ; Task analysis ; Task complexity ; Topology ; variational inference</subject><ispartof>IEEE transactions on knowledge and data engineering, 2020-11, Vol.32 (11), p.2115-2128</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-19924844dd8dd49892bd40f4d323498a39e59cb2c132911d26682f586d28e0743</citedby><cites>FETCH-LOGICAL-c293t-19924844dd8dd49892bd40f4d323498a39e59cb2c132911d26682f586d28e0743</cites><orcidid>0000-0002-4006-7029 ; 0000-0002-1591-8549</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8703137$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8703137$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hu, Lun</creatorcontrib><creatorcontrib>Chan, Keith C. C.</creatorcontrib><creatorcontrib>Yuan, Xiaohui</creatorcontrib><creatorcontrib>Xiong, Shengwu</creatorcontrib><title>A Variational Bayesian Framework for Cluster Analysis in a Complex Network</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>A complex network is a network with non-trivial topological structures. It contains not just topological information but also attribute information available in the rich content of nodes. Concerning the task of cluster analysis in a complex network, model-based algorithms are preferred over distance-based ones, as they avoid designing specific distance measures. However, their models are only applicable to complex networks where the attribute information is composed of attributes in binary form. To overcome this disadvantage, we introduce a three-layer node-attribute-value hierarchical structure to describe the attribute information in a flexible and interpretable manner. Then, a new Bayesian model is proposed to simulate the generative process of a complex network. In this model, the attribute information is generated by following the hierarchical structure while the links between pairwise nodes are generated by a stochastic blockmodel. To solve the corresponding inference problem, we develop a variational Bayesian algorithm called TARA, which allows us to identify functionally meaningful clusters through an iterative procedure. Our extensive experiment results show that TARA can be an effective algorithm for cluster analysis in a complex network. Moreover, the parallelized version of TARA makes it possible to perform efficiently at its tasks when applied to large complex networks.</description><subject>Algorithms</subject><subject>Analytical models</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Bayesian model</subject><subject>Cluster analysis</subject><subject>Clustering algorithms</subject><subject>Complex network</subject><subject>Complex networks</subject><subject>Distance measurement</subject><subject>Iterative methods</subject><subject>node attributes</subject><subject>Nodes</subject><subject>Parallel processing</subject><subject>Social networking (online)</subject><subject>Stochastic processes</subject><subject>Structural hierarchy</subject><subject>Task analysis</subject><subject>Task complexity</subject><subject>Topology</subject><subject>variational inference</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwzAMhiMEEmPwAxCXSJw77CRdk-MoG18TXAbXKGtSKaNbR9IJ9u9JtYmTbel5Lfsh5BphhAjqbvH6MB0xQDViCgUDOCEDzHOZMVR4mnoQmAkuinNyEeMKAGQhcUBeJvTTBG86325MQ-_N3kVvNnQWzNr9tOGL1m2gZbOLnQt0kph99JH6DTW0bNfbxv3SN9f15CU5q00T3dWxDsnHbLoon7L5--NzOZlnFVO8y1ApJqQQ1kprhZKKLa2AWljOeBoNVy5X1ZJVyNMraNl4LFmdy7Fl0kEh-JDcHvZuQ_u9c7HTq3YX0mVRMyEUB5kjJAoPVBXaGIOr9Tb4tQl7jaB7ZbpXpntl-qgsZW4OGe-c--dlARx5wf8A8ZhlaA</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Hu, Lun</creator><creator>Chan, Keith C. C.</creator><creator>Yuan, Xiaohui</creator><creator>Xiong, Shengwu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4006-7029</orcidid><orcidid>https://orcid.org/0000-0002-1591-8549</orcidid></search><sort><creationdate>20201101</creationdate><title>A Variational Bayesian Framework for Cluster Analysis in a Complex Network</title><author>Hu, Lun ; Chan, Keith C. C. ; Yuan, Xiaohui ; Xiong, Shengwu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-19924844dd8dd49892bd40f4d323498a39e59cb2c132911d26682f586d28e0743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Analytical models</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Bayesian model</topic><topic>Cluster analysis</topic><topic>Clustering algorithms</topic><topic>Complex network</topic><topic>Complex networks</topic><topic>Distance measurement</topic><topic>Iterative methods</topic><topic>node attributes</topic><topic>Nodes</topic><topic>Parallel processing</topic><topic>Social networking (online)</topic><topic>Stochastic processes</topic><topic>Structural hierarchy</topic><topic>Task analysis</topic><topic>Task complexity</topic><topic>Topology</topic><topic>variational inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Lun</creatorcontrib><creatorcontrib>Chan, Keith C. C.</creatorcontrib><creatorcontrib>Yuan, Xiaohui</creatorcontrib><creatorcontrib>Xiong, Shengwu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hu, Lun</au><au>Chan, Keith C. C.</au><au>Yuan, Xiaohui</au><au>Xiong, Shengwu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Variational Bayesian Framework for Cluster Analysis in a Complex Network</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>32</volume><issue>11</issue><spage>2115</spage><epage>2128</epage><pages>2115-2128</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>A complex network is a network with non-trivial topological structures. It contains not just topological information but also attribute information available in the rich content of nodes. Concerning the task of cluster analysis in a complex network, model-based algorithms are preferred over distance-based ones, as they avoid designing specific distance measures. However, their models are only applicable to complex networks where the attribute information is composed of attributes in binary form. To overcome this disadvantage, we introduce a three-layer node-attribute-value hierarchical structure to describe the attribute information in a flexible and interpretable manner. Then, a new Bayesian model is proposed to simulate the generative process of a complex network. In this model, the attribute information is generated by following the hierarchical structure while the links between pairwise nodes are generated by a stochastic blockmodel. To solve the corresponding inference problem, we develop a variational Bayesian algorithm called TARA, which allows us to identify functionally meaningful clusters through an iterative procedure. Our extensive experiment results show that TARA can be an effective algorithm for cluster analysis in a complex network. Moreover, the parallelized version of TARA makes it possible to perform efficiently at its tasks when applied to large complex networks.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2019.2914200</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4006-7029</orcidid><orcidid>https://orcid.org/0000-0002-1591-8549</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2020-11, Vol.32 (11), p.2115-2128 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_proquest_journals_2449308510 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Analytical models Bayes methods Bayesian analysis Bayesian model Cluster analysis Clustering algorithms Complex network Complex networks Distance measurement Iterative methods node attributes Nodes Parallel processing Social networking (online) Stochastic processes Structural hierarchy Task analysis Task complexity Topology variational inference |
title | A Variational Bayesian Framework for Cluster Analysis in a Complex Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A03%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Variational%20Bayesian%20Framework%20for%20Cluster%20Analysis%20in%20a%20Complex%20Network&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Hu,%20Lun&rft.date=2020-11-01&rft.volume=32&rft.issue=11&rft.spage=2115&rft.epage=2128&rft.pages=2115-2128&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2019.2914200&rft_dat=%3Cproquest_RIE%3E2449308510%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449308510&rft_id=info:pmid/&rft_ieee_id=8703137&rfr_iscdi=true |