Electro-mechanically guided growth and patterns

Several experiments have demonstrated the existence of an electro-mechanical effect in many biological tissues and hydrogels, and its actual influence on growth, migration, and pattern formation. Here, to model these interactions and capture some growth phenomena found in Nature, we extend volume gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the mechanics and physics of solids 2020-10, Vol.143, p.104073, Article 104073
Hauptverfasser: Du, Yangkun, Su, Yipin, Lü, Chaofeng, Chen, Weiqiu, Destrade, Michel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 104073
container_title Journal of the mechanics and physics of solids
container_volume 143
creator Du, Yangkun
Su, Yipin
Lü, Chaofeng
Chen, Weiqiu
Destrade, Michel
description Several experiments have demonstrated the existence of an electro-mechanical effect in many biological tissues and hydrogels, and its actual influence on growth, migration, and pattern formation. Here, to model these interactions and capture some growth phenomena found in Nature, we extend volume growth theory to account for an electro-elasticity coupling. Based on the multiplicative decomposition, we present a general analysis of isotropic growth and pattern formation of electro-elastic solids under external mechanical and electrical fields. As an example, we treat the case of a tubular structure to illustrate an electro-mechanically guided growth affected by axial strain and radial voltage. Our numerical results show that a high voltage can enhance the non-uniformity of the residual stress distribution and induce extensional buckling, while a low voltage can delay the onset of wrinkling shapes and can also generate more complex morphologies. Within a controllable range, axial tensile stretching shows the ability to stabilise the tube and help form more complex 3D patterns, while compressive stretching promotes instability. Both the applied voltage and external axial strain have a significant impact on guiding growth and pattern formation. Our modelling provides a basic tool for analysing the growth of electro-elastic materials, which can be useful for designing a pattern prescription strategy or growth self-assembly in Engineering.
doi_str_mv 10.1016/j.jmps.2020.104073
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2449280723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022509620303070</els_id><sourcerecordid>2449280723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-1fa161d10e82a4c8a992a0dc3d7dec3f76855896c53ff76da006dab0f9b758853</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMoWFf_gKeC5-5OkqZJwYss6wcseNFzyCbpbkq_TFpl_70p9exlhhned97hQegewxoDLjb1um6HsCZA5kUOnF6gBAtOs5wLcokSAEIyBmVxjW5CqAGAAccJ2uwaq0ffZ63VJ9U5rZrmnB4nZ6xJj77_GU-p6kw6qHG0vgu36KpSTbB3f32FPp93H9vXbP_-8rZ92meacjJmuFK4wAaDFUTlWqiyJAqMpoYbq2nFC8GYKAvNaBUHowBiOUBVHjgTgtEVeljuDr7_mmwYZd1PvouRkuR5SQRwQqOKLCrt-xC8reTgXav8WWKQMxhZyxmMnMHIBUw0PS4mG___dtbLoJ3ttDXORxbS9O4_-y8ke2si</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449280723</pqid></control><display><type>article</type><title>Electro-mechanically guided growth and patterns</title><source>Elsevier ScienceDirect Journals</source><creator>Du, Yangkun ; Su, Yipin ; Lü, Chaofeng ; Chen, Weiqiu ; Destrade, Michel</creator><creatorcontrib>Du, Yangkun ; Su, Yipin ; Lü, Chaofeng ; Chen, Weiqiu ; Destrade, Michel</creatorcontrib><description>Several experiments have demonstrated the existence of an electro-mechanical effect in many biological tissues and hydrogels, and its actual influence on growth, migration, and pattern formation. Here, to model these interactions and capture some growth phenomena found in Nature, we extend volume growth theory to account for an electro-elasticity coupling. Based on the multiplicative decomposition, we present a general analysis of isotropic growth and pattern formation of electro-elastic solids under external mechanical and electrical fields. As an example, we treat the case of a tubular structure to illustrate an electro-mechanically guided growth affected by axial strain and radial voltage. Our numerical results show that a high voltage can enhance the non-uniformity of the residual stress distribution and induce extensional buckling, while a low voltage can delay the onset of wrinkling shapes and can also generate more complex morphologies. Within a controllable range, axial tensile stretching shows the ability to stabilise the tube and help form more complex 3D patterns, while compressive stretching promotes instability. Both the applied voltage and external axial strain have a significant impact on guiding growth and pattern formation. Our modelling provides a basic tool for analysing the growth of electro-elastic materials, which can be useful for designing a pattern prescription strategy or growth self-assembly in Engineering.</description><identifier>ISSN: 0022-5096</identifier><identifier>EISSN: 1873-4782</identifier><identifier>DOI: 10.1016/j.jmps.2020.104073</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Axial strain ; Axial stress ; Biological effects ; Electro-mechanical coupling ; Guided growth ; Hydrogels ; Low voltage ; Morphology ; Nonuniformity ; Pattern formation ; Residual stress ; Self-assembly ; Stress concentration ; Stress distribution ; Stretching ; Tissues ; Volume growth</subject><ispartof>Journal of the mechanics and physics of solids, 2020-10, Vol.143, p.104073, Article 104073</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-1fa161d10e82a4c8a992a0dc3d7dec3f76855896c53ff76da006dab0f9b758853</citedby><cites>FETCH-LOGICAL-c372t-1fa161d10e82a4c8a992a0dc3d7dec3f76855896c53ff76da006dab0f9b758853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022509620303070$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Du, Yangkun</creatorcontrib><creatorcontrib>Su, Yipin</creatorcontrib><creatorcontrib>Lü, Chaofeng</creatorcontrib><creatorcontrib>Chen, Weiqiu</creatorcontrib><creatorcontrib>Destrade, Michel</creatorcontrib><title>Electro-mechanically guided growth and patterns</title><title>Journal of the mechanics and physics of solids</title><description>Several experiments have demonstrated the existence of an electro-mechanical effect in many biological tissues and hydrogels, and its actual influence on growth, migration, and pattern formation. Here, to model these interactions and capture some growth phenomena found in Nature, we extend volume growth theory to account for an electro-elasticity coupling. Based on the multiplicative decomposition, we present a general analysis of isotropic growth and pattern formation of electro-elastic solids under external mechanical and electrical fields. As an example, we treat the case of a tubular structure to illustrate an electro-mechanically guided growth affected by axial strain and radial voltage. Our numerical results show that a high voltage can enhance the non-uniformity of the residual stress distribution and induce extensional buckling, while a low voltage can delay the onset of wrinkling shapes and can also generate more complex morphologies. Within a controllable range, axial tensile stretching shows the ability to stabilise the tube and help form more complex 3D patterns, while compressive stretching promotes instability. Both the applied voltage and external axial strain have a significant impact on guiding growth and pattern formation. Our modelling provides a basic tool for analysing the growth of electro-elastic materials, which can be useful for designing a pattern prescription strategy or growth self-assembly in Engineering.</description><subject>Axial strain</subject><subject>Axial stress</subject><subject>Biological effects</subject><subject>Electro-mechanical coupling</subject><subject>Guided growth</subject><subject>Hydrogels</subject><subject>Low voltage</subject><subject>Morphology</subject><subject>Nonuniformity</subject><subject>Pattern formation</subject><subject>Residual stress</subject><subject>Self-assembly</subject><subject>Stress concentration</subject><subject>Stress distribution</subject><subject>Stretching</subject><subject>Tissues</subject><subject>Volume growth</subject><issn>0022-5096</issn><issn>1873-4782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMoWFf_gKeC5-5OkqZJwYss6wcseNFzyCbpbkq_TFpl_70p9exlhhned97hQegewxoDLjb1um6HsCZA5kUOnF6gBAtOs5wLcokSAEIyBmVxjW5CqAGAAccJ2uwaq0ffZ63VJ9U5rZrmnB4nZ6xJj77_GU-p6kw6qHG0vgu36KpSTbB3f32FPp93H9vXbP_-8rZ92meacjJmuFK4wAaDFUTlWqiyJAqMpoYbq2nFC8GYKAvNaBUHowBiOUBVHjgTgtEVeljuDr7_mmwYZd1PvouRkuR5SQRwQqOKLCrt-xC8reTgXav8WWKQMxhZyxmMnMHIBUw0PS4mG___dtbLoJ3ttDXORxbS9O4_-y8ke2si</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Du, Yangkun</creator><creator>Su, Yipin</creator><creator>Lü, Chaofeng</creator><creator>Chen, Weiqiu</creator><creator>Destrade, Michel</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>202010</creationdate><title>Electro-mechanically guided growth and patterns</title><author>Du, Yangkun ; Su, Yipin ; Lü, Chaofeng ; Chen, Weiqiu ; Destrade, Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-1fa161d10e82a4c8a992a0dc3d7dec3f76855896c53ff76da006dab0f9b758853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Axial strain</topic><topic>Axial stress</topic><topic>Biological effects</topic><topic>Electro-mechanical coupling</topic><topic>Guided growth</topic><topic>Hydrogels</topic><topic>Low voltage</topic><topic>Morphology</topic><topic>Nonuniformity</topic><topic>Pattern formation</topic><topic>Residual stress</topic><topic>Self-assembly</topic><topic>Stress concentration</topic><topic>Stress distribution</topic><topic>Stretching</topic><topic>Tissues</topic><topic>Volume growth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Yangkun</creatorcontrib><creatorcontrib>Su, Yipin</creatorcontrib><creatorcontrib>Lü, Chaofeng</creatorcontrib><creatorcontrib>Chen, Weiqiu</creatorcontrib><creatorcontrib>Destrade, Michel</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the mechanics and physics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Yangkun</au><au>Su, Yipin</au><au>Lü, Chaofeng</au><au>Chen, Weiqiu</au><au>Destrade, Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electro-mechanically guided growth and patterns</atitle><jtitle>Journal of the mechanics and physics of solids</jtitle><date>2020-10</date><risdate>2020</risdate><volume>143</volume><spage>104073</spage><pages>104073-</pages><artnum>104073</artnum><issn>0022-5096</issn><eissn>1873-4782</eissn><abstract>Several experiments have demonstrated the existence of an electro-mechanical effect in many biological tissues and hydrogels, and its actual influence on growth, migration, and pattern formation. Here, to model these interactions and capture some growth phenomena found in Nature, we extend volume growth theory to account for an electro-elasticity coupling. Based on the multiplicative decomposition, we present a general analysis of isotropic growth and pattern formation of electro-elastic solids under external mechanical and electrical fields. As an example, we treat the case of a tubular structure to illustrate an electro-mechanically guided growth affected by axial strain and radial voltage. Our numerical results show that a high voltage can enhance the non-uniformity of the residual stress distribution and induce extensional buckling, while a low voltage can delay the onset of wrinkling shapes and can also generate more complex morphologies. Within a controllable range, axial tensile stretching shows the ability to stabilise the tube and help form more complex 3D patterns, while compressive stretching promotes instability. Both the applied voltage and external axial strain have a significant impact on guiding growth and pattern formation. Our modelling provides a basic tool for analysing the growth of electro-elastic materials, which can be useful for designing a pattern prescription strategy or growth self-assembly in Engineering.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jmps.2020.104073</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-5096
ispartof Journal of the mechanics and physics of solids, 2020-10, Vol.143, p.104073, Article 104073
issn 0022-5096
1873-4782
language eng
recordid cdi_proquest_journals_2449280723
source Elsevier ScienceDirect Journals
subjects Axial strain
Axial stress
Biological effects
Electro-mechanical coupling
Guided growth
Hydrogels
Low voltage
Morphology
Nonuniformity
Pattern formation
Residual stress
Self-assembly
Stress concentration
Stress distribution
Stretching
Tissues
Volume growth
title Electro-mechanically guided growth and patterns
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A12%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electro-mechanically%20guided%20growth%20and%20patterns&rft.jtitle=Journal%20of%20the%20mechanics%20and%20physics%20of%20solids&rft.au=Du,%20Yangkun&rft.date=2020-10&rft.volume=143&rft.spage=104073&rft.pages=104073-&rft.artnum=104073&rft.issn=0022-5096&rft.eissn=1873-4782&rft_id=info:doi/10.1016/j.jmps.2020.104073&rft_dat=%3Cproquest_cross%3E2449280723%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449280723&rft_id=info:pmid/&rft_els_id=S0022509620303070&rfr_iscdi=true