Effects of Picture Frame Technique (PFT) on the corrosion behavior of 6061 aluminum alloy

The 6061 Al–Mg–Si alloy is used in nuclear fuel plates of nuclear research reactors which are fed with fuel in plate shapes. The production of these plates is based on the picture frame technique (PFT). The picture frame technique (PFT) is a manufacturing process for the fabrication of nuclear fuel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2020-10, Vol.539, p.152320, Article 152320
Hauptverfasser: Milagre, Mariana X., Donatus, Uyime, Mogili, Naga V., Machado, Caruline S.C., Araujo, Joao Victor S., Klumpp, Rafael E., Fernandes, Stela M.C., de Souza, José A.B., Costa, Isolda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 152320
container_title Journal of nuclear materials
container_volume 539
creator Milagre, Mariana X.
Donatus, Uyime
Mogili, Naga V.
Machado, Caruline S.C.
Araujo, Joao Victor S.
Klumpp, Rafael E.
Fernandes, Stela M.C.
de Souza, José A.B.
Costa, Isolda
description The 6061 Al–Mg–Si alloy is used in nuclear fuel plates of nuclear research reactors which are fed with fuel in plate shapes. The production of these plates is based on the picture frame technique (PFT). The picture frame technique (PFT) is a manufacturing process for the fabrication of nuclear fuel plates where the nuclear fuel is encapsulated by Al alloy plates and thermomechanically processed to generate a set with reduced thickness. The effects of PFT on the corrosion resistance of the 6061 aluminum alloy were evaluated in this study by immersion and electrochemical tests in 0.005 mol L−1 NaCl solution. The results showed that the PFT fabrication process increases the corrosion resistance of the 6061 alloy in relation to the conventional 6061-T6, due phase dissolution and lower content of β’’ phase. Also, corrosion propagation gradually changes, with an increasing number of processing steps, from intergranular to intragranular corrosion attack.
doi_str_mv 10.1016/j.jnucmat.2020.152320
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2449273093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311520302312</els_id><sourcerecordid>2449273093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-fabdd24fc14a2e2554b783d99a03f19749ef317e054920831632edfbd187e5ec3</originalsourceid><addsrcrecordid>eNqFkM9LwzAUx4MoOKd_ghDwoofOl6Rp15OIbCoM3GEePIU0fWEpazPTdrD_3ozu7un94H3fe98PIfcMZgxY9lzP6nYwje5nHHjsSS44XJAJm-ciSeccLskEgPNEMCavyU3X1QAgC5AT8rOwFk3fUW_p2pl-CEiXQTdIN2i2rfsdkD6ul5sn6lvab5EaH4LvXKxK3OqD8-EkzSBjVO-GxrVDE5OdP96SK6t3Hd6d45R8Lxebt49k9fX--fa6SowQeZ9YXVYVT61hqebIpUzLfC6qotAgLCvytEArWI4g04LDXLBMcKxsWUV3KNGIKXkY9-6Dj992var9ENp4UvE0anIBhYhTcpwy8fsuoFX74BodjoqBOlFUtTpTVCeKaqQYdS-jDqOFg8OgOuOwNVi5ELmpyrt_NvwBbF979w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449273093</pqid></control><display><type>article</type><title>Effects of Picture Frame Technique (PFT) on the corrosion behavior of 6061 aluminum alloy</title><source>Access via ScienceDirect (Elsevier)</source><creator>Milagre, Mariana X. ; Donatus, Uyime ; Mogili, Naga V. ; Machado, Caruline S.C. ; Araujo, Joao Victor S. ; Klumpp, Rafael E. ; Fernandes, Stela M.C. ; de Souza, José A.B. ; Costa, Isolda</creator><creatorcontrib>Milagre, Mariana X. ; Donatus, Uyime ; Mogili, Naga V. ; Machado, Caruline S.C. ; Araujo, Joao Victor S. ; Klumpp, Rafael E. ; Fernandes, Stela M.C. ; de Souza, José A.B. ; Costa, Isolda</creatorcontrib><description>The 6061 Al–Mg–Si alloy is used in nuclear fuel plates of nuclear research reactors which are fed with fuel in plate shapes. The production of these plates is based on the picture frame technique (PFT). The picture frame technique (PFT) is a manufacturing process for the fabrication of nuclear fuel plates where the nuclear fuel is encapsulated by Al alloy plates and thermomechanically processed to generate a set with reduced thickness. The effects of PFT on the corrosion resistance of the 6061 aluminum alloy were evaluated in this study by immersion and electrochemical tests in 0.005 mol L−1 NaCl solution. The results showed that the PFT fabrication process increases the corrosion resistance of the 6061 alloy in relation to the conventional 6061-T6, due phase dissolution and lower content of β’’ phase. Also, corrosion propagation gradually changes, with an increasing number of processing steps, from intergranular to intragranular corrosion attack.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2020.152320</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Aluminum ; Aluminum alloys ; Aluminum base alloys ; Characterization ; Corrosion ; Corrosion effects ; Corrosion resistance ; Corrosion resistant alloys ; Electrochemistry ; Fabrication ; Immersion tests (corrosion) ; Intergranular corrosion ; Localized corrosion ; Magnesium ; Manufacturing industry ; Metal plates ; Nuclear fuels ; Nuclear reactors ; Nuclear research and test reactors ; Picture frames ; Silicon ; Sodium chloride ; Submerging</subject><ispartof>Journal of nuclear materials, 2020-10, Vol.539, p.152320, Article 152320</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Oct 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-fabdd24fc14a2e2554b783d99a03f19749ef317e054920831632edfbd187e5ec3</citedby><cites>FETCH-LOGICAL-c337t-fabdd24fc14a2e2554b783d99a03f19749ef317e054920831632edfbd187e5ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnucmat.2020.152320$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Milagre, Mariana X.</creatorcontrib><creatorcontrib>Donatus, Uyime</creatorcontrib><creatorcontrib>Mogili, Naga V.</creatorcontrib><creatorcontrib>Machado, Caruline S.C.</creatorcontrib><creatorcontrib>Araujo, Joao Victor S.</creatorcontrib><creatorcontrib>Klumpp, Rafael E.</creatorcontrib><creatorcontrib>Fernandes, Stela M.C.</creatorcontrib><creatorcontrib>de Souza, José A.B.</creatorcontrib><creatorcontrib>Costa, Isolda</creatorcontrib><title>Effects of Picture Frame Technique (PFT) on the corrosion behavior of 6061 aluminum alloy</title><title>Journal of nuclear materials</title><description>The 6061 Al–Mg–Si alloy is used in nuclear fuel plates of nuclear research reactors which are fed with fuel in plate shapes. The production of these plates is based on the picture frame technique (PFT). The picture frame technique (PFT) is a manufacturing process for the fabrication of nuclear fuel plates where the nuclear fuel is encapsulated by Al alloy plates and thermomechanically processed to generate a set with reduced thickness. The effects of PFT on the corrosion resistance of the 6061 aluminum alloy were evaluated in this study by immersion and electrochemical tests in 0.005 mol L−1 NaCl solution. The results showed that the PFT fabrication process increases the corrosion resistance of the 6061 alloy in relation to the conventional 6061-T6, due phase dissolution and lower content of β’’ phase. Also, corrosion propagation gradually changes, with an increasing number of processing steps, from intergranular to intragranular corrosion attack.</description><subject>Aluminum</subject><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Characterization</subject><subject>Corrosion</subject><subject>Corrosion effects</subject><subject>Corrosion resistance</subject><subject>Corrosion resistant alloys</subject><subject>Electrochemistry</subject><subject>Fabrication</subject><subject>Immersion tests (corrosion)</subject><subject>Intergranular corrosion</subject><subject>Localized corrosion</subject><subject>Magnesium</subject><subject>Manufacturing industry</subject><subject>Metal plates</subject><subject>Nuclear fuels</subject><subject>Nuclear reactors</subject><subject>Nuclear research and test reactors</subject><subject>Picture frames</subject><subject>Silicon</subject><subject>Sodium chloride</subject><subject>Submerging</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAUx4MoOKd_ghDwoofOl6Rp15OIbCoM3GEePIU0fWEpazPTdrD_3ozu7un94H3fe98PIfcMZgxY9lzP6nYwje5nHHjsSS44XJAJm-ciSeccLskEgPNEMCavyU3X1QAgC5AT8rOwFk3fUW_p2pl-CEiXQTdIN2i2rfsdkD6ul5sn6lvab5EaH4LvXKxK3OqD8-EkzSBjVO-GxrVDE5OdP96SK6t3Hd6d45R8Lxebt49k9fX--fa6SowQeZ9YXVYVT61hqebIpUzLfC6qotAgLCvytEArWI4g04LDXLBMcKxsWUV3KNGIKXkY9-6Dj992var9ENp4UvE0anIBhYhTcpwy8fsuoFX74BodjoqBOlFUtTpTVCeKaqQYdS-jDqOFg8OgOuOwNVi5ELmpyrt_NvwBbF979w</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Milagre, Mariana X.</creator><creator>Donatus, Uyime</creator><creator>Mogili, Naga V.</creator><creator>Machado, Caruline S.C.</creator><creator>Araujo, Joao Victor S.</creator><creator>Klumpp, Rafael E.</creator><creator>Fernandes, Stela M.C.</creator><creator>de Souza, José A.B.</creator><creator>Costa, Isolda</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>202010</creationdate><title>Effects of Picture Frame Technique (PFT) on the corrosion behavior of 6061 aluminum alloy</title><author>Milagre, Mariana X. ; Donatus, Uyime ; Mogili, Naga V. ; Machado, Caruline S.C. ; Araujo, Joao Victor S. ; Klumpp, Rafael E. ; Fernandes, Stela M.C. ; de Souza, José A.B. ; Costa, Isolda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-fabdd24fc14a2e2554b783d99a03f19749ef317e054920831632edfbd187e5ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum</topic><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Characterization</topic><topic>Corrosion</topic><topic>Corrosion effects</topic><topic>Corrosion resistance</topic><topic>Corrosion resistant alloys</topic><topic>Electrochemistry</topic><topic>Fabrication</topic><topic>Immersion tests (corrosion)</topic><topic>Intergranular corrosion</topic><topic>Localized corrosion</topic><topic>Magnesium</topic><topic>Manufacturing industry</topic><topic>Metal plates</topic><topic>Nuclear fuels</topic><topic>Nuclear reactors</topic><topic>Nuclear research and test reactors</topic><topic>Picture frames</topic><topic>Silicon</topic><topic>Sodium chloride</topic><topic>Submerging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Milagre, Mariana X.</creatorcontrib><creatorcontrib>Donatus, Uyime</creatorcontrib><creatorcontrib>Mogili, Naga V.</creatorcontrib><creatorcontrib>Machado, Caruline S.C.</creatorcontrib><creatorcontrib>Araujo, Joao Victor S.</creatorcontrib><creatorcontrib>Klumpp, Rafael E.</creatorcontrib><creatorcontrib>Fernandes, Stela M.C.</creatorcontrib><creatorcontrib>de Souza, José A.B.</creatorcontrib><creatorcontrib>Costa, Isolda</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Milagre, Mariana X.</au><au>Donatus, Uyime</au><au>Mogili, Naga V.</au><au>Machado, Caruline S.C.</au><au>Araujo, Joao Victor S.</au><au>Klumpp, Rafael E.</au><au>Fernandes, Stela M.C.</au><au>de Souza, José A.B.</au><au>Costa, Isolda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Picture Frame Technique (PFT) on the corrosion behavior of 6061 aluminum alloy</atitle><jtitle>Journal of nuclear materials</jtitle><date>2020-10</date><risdate>2020</risdate><volume>539</volume><spage>152320</spage><pages>152320-</pages><artnum>152320</artnum><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>The 6061 Al–Mg–Si alloy is used in nuclear fuel plates of nuclear research reactors which are fed with fuel in plate shapes. The production of these plates is based on the picture frame technique (PFT). The picture frame technique (PFT) is a manufacturing process for the fabrication of nuclear fuel plates where the nuclear fuel is encapsulated by Al alloy plates and thermomechanically processed to generate a set with reduced thickness. The effects of PFT on the corrosion resistance of the 6061 aluminum alloy were evaluated in this study by immersion and electrochemical tests in 0.005 mol L−1 NaCl solution. The results showed that the PFT fabrication process increases the corrosion resistance of the 6061 alloy in relation to the conventional 6061-T6, due phase dissolution and lower content of β’’ phase. Also, corrosion propagation gradually changes, with an increasing number of processing steps, from intergranular to intragranular corrosion attack.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2020.152320</doi></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 2020-10, Vol.539, p.152320, Article 152320
issn 0022-3115
1873-4820
language eng
recordid cdi_proquest_journals_2449273093
source Access via ScienceDirect (Elsevier)
subjects Aluminum
Aluminum alloys
Aluminum base alloys
Characterization
Corrosion
Corrosion effects
Corrosion resistance
Corrosion resistant alloys
Electrochemistry
Fabrication
Immersion tests (corrosion)
Intergranular corrosion
Localized corrosion
Magnesium
Manufacturing industry
Metal plates
Nuclear fuels
Nuclear reactors
Nuclear research and test reactors
Picture frames
Silicon
Sodium chloride
Submerging
title Effects of Picture Frame Technique (PFT) on the corrosion behavior of 6061 aluminum alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A52%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Picture%20Frame%20Technique%20(PFT)%20on%20the%20corrosion%20behavior%20of%206061%20aluminum%20alloy&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Milagre,%20Mariana%20X.&rft.date=2020-10&rft.volume=539&rft.spage=152320&rft.pages=152320-&rft.artnum=152320&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/j.jnucmat.2020.152320&rft_dat=%3Cproquest_cross%3E2449273093%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449273093&rft_id=info:pmid/&rft_els_id=S0022311520302312&rfr_iscdi=true