Genuine Active Species Generated from Fe3N Nanotube by Synergistic CoNi Doping for Boosted Oxygen Evolution Catalysis

The surface reconstruction of oxygen evolution reaction (OER) catalysts has been proven favorable for enhancing its catalytic activity. However, what is the active site and how to promote the active species generation remain unclear and are still under debate. Here, the in situ synthesis of CoNi inc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2020-10, Vol.16 (40), p.n/a
Hauptverfasser: Dong, Jing, Lu, Yue, Tian, Xinxin, Zhang, Fu‐Qiang, Chen, Shuai, Yan, Wenjun, He, Hai‐Long, Wang, Yueshuai, Zhang, Yue‐Biao, Qin, Yong, Sui, Manling, Zhang, Xian‐Ming, Fan, Xiujun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 40
container_start_page
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 16
creator Dong, Jing
Lu, Yue
Tian, Xinxin
Zhang, Fu‐Qiang
Chen, Shuai
Yan, Wenjun
He, Hai‐Long
Wang, Yueshuai
Zhang, Yue‐Biao
Qin, Yong
Sui, Manling
Zhang, Xian‐Ming
Fan, Xiujun
description The surface reconstruction of oxygen evolution reaction (OER) catalysts has been proven favorable for enhancing its catalytic activity. However, what is the active site and how to promote the active species generation remain unclear and are still under debate. Here, the in situ synthesis of CoNi incorporated Fe3N nanotubes (CoNi–Fe3N) on the iron foil through the anodization/electrodeposition/nitridation process for use of boosted OER catalysis is reported. The synergistic CoNi doping induces the lattice expansion and up shifts the d‐band center of Fe3N, which enhances the adsorption of hydroxyl groups from electrolyte during the OER catalysis, facilitating the generation of active CoNi–FeOOH on the Fe3N nanotube surface. As a result of this OER‐conditioned surface reconstruction, the optimized catalyst requires an overpotential of only 285 mV at a current density of 10 mA cm−2 with a Tafel slope of 34 mV dec−1, outperforming commercial RuO2 catalysts. Density functional theory (DFT) calculations further reveal that the Ni site in CoNi–FeOOH modulates the adsorption of OER intermediates and delivers a lower overpotential than those from Fe and Co sites, serving as the optimal active site for excellent OER performance. CoNi incorporated Fe3N nanotubes (CoNi–Fe3N) are in situ grown on iron foil. During oxygen evolution reaction (OER) catalysis, the lattice distortion and upshifted d‐band center enable facilitated reconstruction of CoNi–Fe3N toward active CoNi–FeOOH, in which the Ni site is the genuine active site with optimal adsorption for oxygenated intermediates. This work supplies a new insight into developing high‐efficiency OER catalysts through adjusting dynamic self‐reconstruction.
doi_str_mv 10.1002/smll.202003824
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2449090108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2449090108</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2704-fca3ae4a62e2ee7b775a9ca63f8ec2d391f9af028f52d8b03c9d70fbf00867493</originalsourceid><addsrcrecordid>eNo9kM9PgzAUgInRxDm9em7imfnaMqDHids0we0wPTcFXkkXRpHClP9elpmd3q_vvZd8nvdIYUYB2LM7VNWMAQPgMQuuvAkNKffDmInrS07h1rtzbj8ylAXRxOvXWPemRrLIO3NEsmswN-jI2MZWdVgQ3doDWSHfkI2qbddnSLKB7IZxXhrXmZwkdmPIq21MXRJtW_JirTttbn-HEmuyPNqq74ytSaI6VQ3OuHvvRqvK4cN_nHpfq-Vn8uan2_V7skj9kkUQ-DpXXGGgQoYMMcqiaK5ErkKuY8xZwQXVQmlgsZ6zIs6A56KIQGcaIA6jQPCp93S-27T2u0fXyb3t23p8KVkQCBBAIR4pcaZ-TIWDbFpzUO0gKciTV3nyKi9e5e4jTS8V_wOIeG_s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449090108</pqid></control><display><type>article</type><title>Genuine Active Species Generated from Fe3N Nanotube by Synergistic CoNi Doping for Boosted Oxygen Evolution Catalysis</title><source>Wiley Online Library All Journals</source><creator>Dong, Jing ; Lu, Yue ; Tian, Xinxin ; Zhang, Fu‐Qiang ; Chen, Shuai ; Yan, Wenjun ; He, Hai‐Long ; Wang, Yueshuai ; Zhang, Yue‐Biao ; Qin, Yong ; Sui, Manling ; Zhang, Xian‐Ming ; Fan, Xiujun</creator><creatorcontrib>Dong, Jing ; Lu, Yue ; Tian, Xinxin ; Zhang, Fu‐Qiang ; Chen, Shuai ; Yan, Wenjun ; He, Hai‐Long ; Wang, Yueshuai ; Zhang, Yue‐Biao ; Qin, Yong ; Sui, Manling ; Zhang, Xian‐Ming ; Fan, Xiujun</creatorcontrib><description>The surface reconstruction of oxygen evolution reaction (OER) catalysts has been proven favorable for enhancing its catalytic activity. However, what is the active site and how to promote the active species generation remain unclear and are still under debate. Here, the in situ synthesis of CoNi incorporated Fe3N nanotubes (CoNi–Fe3N) on the iron foil through the anodization/electrodeposition/nitridation process for use of boosted OER catalysis is reported. The synergistic CoNi doping induces the lattice expansion and up shifts the d‐band center of Fe3N, which enhances the adsorption of hydroxyl groups from electrolyte during the OER catalysis, facilitating the generation of active CoNi–FeOOH on the Fe3N nanotube surface. As a result of this OER‐conditioned surface reconstruction, the optimized catalyst requires an overpotential of only 285 mV at a current density of 10 mA cm−2 with a Tafel slope of 34 mV dec−1, outperforming commercial RuO2 catalysts. Density functional theory (DFT) calculations further reveal that the Ni site in CoNi–FeOOH modulates the adsorption of OER intermediates and delivers a lower overpotential than those from Fe and Co sites, serving as the optimal active site for excellent OER performance. CoNi incorporated Fe3N nanotubes (CoNi–Fe3N) are in situ grown on iron foil. During oxygen evolution reaction (OER) catalysis, the lattice distortion and upshifted d‐band center enable facilitated reconstruction of CoNi–Fe3N toward active CoNi–FeOOH, in which the Ni site is the genuine active site with optimal adsorption for oxygenated intermediates. This work supplies a new insight into developing high‐efficiency OER catalysts through adjusting dynamic self‐reconstruction.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202003824</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Adsorption ; Catalysis ; Catalysts ; Catalytic activity ; Density functional theory ; Doping ; electrocatalysis ; Fe 3N ; Foils ; Hydroxyl groups ; Intermetallic compounds ; Iron ; Nanotechnology ; Nanotubes ; oxygen evolution reaction ; Oxygen evolution reactions ; Reconstruction ; self‐reconstruction ; Surface chemistry</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2020-10, Vol.16 (40), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4849-4305</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202003824$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202003824$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Dong, Jing</creatorcontrib><creatorcontrib>Lu, Yue</creatorcontrib><creatorcontrib>Tian, Xinxin</creatorcontrib><creatorcontrib>Zhang, Fu‐Qiang</creatorcontrib><creatorcontrib>Chen, Shuai</creatorcontrib><creatorcontrib>Yan, Wenjun</creatorcontrib><creatorcontrib>He, Hai‐Long</creatorcontrib><creatorcontrib>Wang, Yueshuai</creatorcontrib><creatorcontrib>Zhang, Yue‐Biao</creatorcontrib><creatorcontrib>Qin, Yong</creatorcontrib><creatorcontrib>Sui, Manling</creatorcontrib><creatorcontrib>Zhang, Xian‐Ming</creatorcontrib><creatorcontrib>Fan, Xiujun</creatorcontrib><title>Genuine Active Species Generated from Fe3N Nanotube by Synergistic CoNi Doping for Boosted Oxygen Evolution Catalysis</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>The surface reconstruction of oxygen evolution reaction (OER) catalysts has been proven favorable for enhancing its catalytic activity. However, what is the active site and how to promote the active species generation remain unclear and are still under debate. Here, the in situ synthesis of CoNi incorporated Fe3N nanotubes (CoNi–Fe3N) on the iron foil through the anodization/electrodeposition/nitridation process for use of boosted OER catalysis is reported. The synergistic CoNi doping induces the lattice expansion and up shifts the d‐band center of Fe3N, which enhances the adsorption of hydroxyl groups from electrolyte during the OER catalysis, facilitating the generation of active CoNi–FeOOH on the Fe3N nanotube surface. As a result of this OER‐conditioned surface reconstruction, the optimized catalyst requires an overpotential of only 285 mV at a current density of 10 mA cm−2 with a Tafel slope of 34 mV dec−1, outperforming commercial RuO2 catalysts. Density functional theory (DFT) calculations further reveal that the Ni site in CoNi–FeOOH modulates the adsorption of OER intermediates and delivers a lower overpotential than those from Fe and Co sites, serving as the optimal active site for excellent OER performance. CoNi incorporated Fe3N nanotubes (CoNi–Fe3N) are in situ grown on iron foil. During oxygen evolution reaction (OER) catalysis, the lattice distortion and upshifted d‐band center enable facilitated reconstruction of CoNi–Fe3N toward active CoNi–FeOOH, in which the Ni site is the genuine active site with optimal adsorption for oxygenated intermediates. This work supplies a new insight into developing high‐efficiency OER catalysts through adjusting dynamic self‐reconstruction.</description><subject>Adsorption</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Density functional theory</subject><subject>Doping</subject><subject>electrocatalysis</subject><subject>Fe 3N</subject><subject>Foils</subject><subject>Hydroxyl groups</subject><subject>Intermetallic compounds</subject><subject>Iron</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>Reconstruction</subject><subject>self‐reconstruction</subject><subject>Surface chemistry</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kM9PgzAUgInRxDm9em7imfnaMqDHids0we0wPTcFXkkXRpHClP9elpmd3q_vvZd8nvdIYUYB2LM7VNWMAQPgMQuuvAkNKffDmInrS07h1rtzbj8ylAXRxOvXWPemRrLIO3NEsmswN-jI2MZWdVgQ3doDWSHfkI2qbddnSLKB7IZxXhrXmZwkdmPIq21MXRJtW_JirTttbn-HEmuyPNqq74ytSaI6VQ3OuHvvRqvK4cN_nHpfq-Vn8uan2_V7skj9kkUQ-DpXXGGgQoYMMcqiaK5ErkKuY8xZwQXVQmlgsZ6zIs6A56KIQGcaIA6jQPCp93S-27T2u0fXyb3t23p8KVkQCBBAIR4pcaZ-TIWDbFpzUO0gKciTV3nyKi9e5e4jTS8V_wOIeG_s</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Dong, Jing</creator><creator>Lu, Yue</creator><creator>Tian, Xinxin</creator><creator>Zhang, Fu‐Qiang</creator><creator>Chen, Shuai</creator><creator>Yan, Wenjun</creator><creator>He, Hai‐Long</creator><creator>Wang, Yueshuai</creator><creator>Zhang, Yue‐Biao</creator><creator>Qin, Yong</creator><creator>Sui, Manling</creator><creator>Zhang, Xian‐Ming</creator><creator>Fan, Xiujun</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4849-4305</orcidid></search><sort><creationdate>20201001</creationdate><title>Genuine Active Species Generated from Fe3N Nanotube by Synergistic CoNi Doping for Boosted Oxygen Evolution Catalysis</title><author>Dong, Jing ; Lu, Yue ; Tian, Xinxin ; Zhang, Fu‐Qiang ; Chen, Shuai ; Yan, Wenjun ; He, Hai‐Long ; Wang, Yueshuai ; Zhang, Yue‐Biao ; Qin, Yong ; Sui, Manling ; Zhang, Xian‐Ming ; Fan, Xiujun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2704-fca3ae4a62e2ee7b775a9ca63f8ec2d391f9af028f52d8b03c9d70fbf00867493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorption</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Density functional theory</topic><topic>Doping</topic><topic>electrocatalysis</topic><topic>Fe 3N</topic><topic>Foils</topic><topic>Hydroxyl groups</topic><topic>Intermetallic compounds</topic><topic>Iron</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>Reconstruction</topic><topic>self‐reconstruction</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Jing</creatorcontrib><creatorcontrib>Lu, Yue</creatorcontrib><creatorcontrib>Tian, Xinxin</creatorcontrib><creatorcontrib>Zhang, Fu‐Qiang</creatorcontrib><creatorcontrib>Chen, Shuai</creatorcontrib><creatorcontrib>Yan, Wenjun</creatorcontrib><creatorcontrib>He, Hai‐Long</creatorcontrib><creatorcontrib>Wang, Yueshuai</creatorcontrib><creatorcontrib>Zhang, Yue‐Biao</creatorcontrib><creatorcontrib>Qin, Yong</creatorcontrib><creatorcontrib>Sui, Manling</creatorcontrib><creatorcontrib>Zhang, Xian‐Ming</creatorcontrib><creatorcontrib>Fan, Xiujun</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Jing</au><au>Lu, Yue</au><au>Tian, Xinxin</au><au>Zhang, Fu‐Qiang</au><au>Chen, Shuai</au><au>Yan, Wenjun</au><au>He, Hai‐Long</au><au>Wang, Yueshuai</au><au>Zhang, Yue‐Biao</au><au>Qin, Yong</au><au>Sui, Manling</au><au>Zhang, Xian‐Ming</au><au>Fan, Xiujun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genuine Active Species Generated from Fe3N Nanotube by Synergistic CoNi Doping for Boosted Oxygen Evolution Catalysis</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>16</volume><issue>40</issue><epage>n/a</epage><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>The surface reconstruction of oxygen evolution reaction (OER) catalysts has been proven favorable for enhancing its catalytic activity. However, what is the active site and how to promote the active species generation remain unclear and are still under debate. Here, the in situ synthesis of CoNi incorporated Fe3N nanotubes (CoNi–Fe3N) on the iron foil through the anodization/electrodeposition/nitridation process for use of boosted OER catalysis is reported. The synergistic CoNi doping induces the lattice expansion and up shifts the d‐band center of Fe3N, which enhances the adsorption of hydroxyl groups from electrolyte during the OER catalysis, facilitating the generation of active CoNi–FeOOH on the Fe3N nanotube surface. As a result of this OER‐conditioned surface reconstruction, the optimized catalyst requires an overpotential of only 285 mV at a current density of 10 mA cm−2 with a Tafel slope of 34 mV dec−1, outperforming commercial RuO2 catalysts. Density functional theory (DFT) calculations further reveal that the Ni site in CoNi–FeOOH modulates the adsorption of OER intermediates and delivers a lower overpotential than those from Fe and Co sites, serving as the optimal active site for excellent OER performance. CoNi incorporated Fe3N nanotubes (CoNi–Fe3N) are in situ grown on iron foil. During oxygen evolution reaction (OER) catalysis, the lattice distortion and upshifted d‐band center enable facilitated reconstruction of CoNi–Fe3N toward active CoNi–FeOOH, in which the Ni site is the genuine active site with optimal adsorption for oxygenated intermediates. This work supplies a new insight into developing high‐efficiency OER catalysts through adjusting dynamic self‐reconstruction.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202003824</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4849-4305</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2020-10, Vol.16 (40), p.n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_journals_2449090108
source Wiley Online Library All Journals
subjects Adsorption
Catalysis
Catalysts
Catalytic activity
Density functional theory
Doping
electrocatalysis
Fe 3N
Foils
Hydroxyl groups
Intermetallic compounds
Iron
Nanotechnology
Nanotubes
oxygen evolution reaction
Oxygen evolution reactions
Reconstruction
self‐reconstruction
Surface chemistry
title Genuine Active Species Generated from Fe3N Nanotube by Synergistic CoNi Doping for Boosted Oxygen Evolution Catalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A06%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genuine%20Active%20Species%20Generated%20from%20Fe3N%20Nanotube%20by%20Synergistic%20CoNi%20Doping%20for%20Boosted%20Oxygen%20Evolution%20Catalysis&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Dong,%20Jing&rft.date=2020-10-01&rft.volume=16&rft.issue=40&rft.epage=n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202003824&rft_dat=%3Cproquest_wiley%3E2449090108%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449090108&rft_id=info:pmid/&rfr_iscdi=true