Improving Neural Topic Models using Knowledge Distillation
Topic models are often used to identify human-interpretable topics to help make sense of large document collections. We use knowledge distillation to combine the best attributes of probabilistic topic models and pretrained transformers. Our modular method can be straightforwardly applied with any ne...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Hoyle, Alexander Goel, Pranav Resnik, Philip |
description | Topic models are often used to identify human-interpretable topics to help make sense of large document collections. We use knowledge distillation to combine the best attributes of probabilistic topic models and pretrained transformers. Our modular method can be straightforwardly applied with any neural topic model to improve topic quality, which we demonstrate using two models having disparate architectures, obtaining state-of-the-art topic coherence. We show that our adaptable framework not only improves performance in the aggregate over all estimated topics, as is commonly reported, but also in head-to-head comparisons of aligned topics. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2449055144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2449055144</sourcerecordid><originalsourceid>FETCH-proquest_journals_24490551443</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw8swtKMovy8xLV_BLLS1KzFEIyS_ITFbwzU9JzSlWKC0GyXjn5ZfnpKakpyq4ZBaXZObkJJZk5ufxMLCmJeYUp_JCaW4GZTfXEGcPXaCBhaWpxSXxWfmlRXlAqXgjExNLA1NTQxMTY-JUAQDWXTcG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449055144</pqid></control><display><type>article</type><title>Improving Neural Topic Models using Knowledge Distillation</title><source>Free E- Journals</source><creator>Hoyle, Alexander ; Goel, Pranav ; Resnik, Philip</creator><creatorcontrib>Hoyle, Alexander ; Goel, Pranav ; Resnik, Philip</creatorcontrib><description>Topic models are often used to identify human-interpretable topics to help make sense of large document collections. We use knowledge distillation to combine the best attributes of probabilistic topic models and pretrained transformers. Our modular method can be straightforwardly applied with any neural topic model to improve topic quality, which we demonstrate using two models having disparate architectures, obtaining state-of-the-art topic coherence. We show that our adaptable framework not only improves performance in the aggregate over all estimated topics, as is commonly reported, but also in head-to-head comparisons of aligned topics.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Distillation</subject><ispartof>arXiv.org, 2020-10</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Hoyle, Alexander</creatorcontrib><creatorcontrib>Goel, Pranav</creatorcontrib><creatorcontrib>Resnik, Philip</creatorcontrib><title>Improving Neural Topic Models using Knowledge Distillation</title><title>arXiv.org</title><description>Topic models are often used to identify human-interpretable topics to help make sense of large document collections. We use knowledge distillation to combine the best attributes of probabilistic topic models and pretrained transformers. Our modular method can be straightforwardly applied with any neural topic model to improve topic quality, which we demonstrate using two models having disparate architectures, obtaining state-of-the-art topic coherence. We show that our adaptable framework not only improves performance in the aggregate over all estimated topics, as is commonly reported, but also in head-to-head comparisons of aligned topics.</description><subject>Distillation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw8swtKMovy8xLV_BLLS1KzFEIyS_ITFbwzU9JzSlWKC0GyXjn5ZfnpKakpyq4ZBaXZObkJJZk5ufxMLCmJeYUp_JCaW4GZTfXEGcPXaCBhaWpxSXxWfmlRXlAqXgjExNLA1NTQxMTY-JUAQDWXTcG</recordid><startdate>20201005</startdate><enddate>20201005</enddate><creator>Hoyle, Alexander</creator><creator>Goel, Pranav</creator><creator>Resnik, Philip</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201005</creationdate><title>Improving Neural Topic Models using Knowledge Distillation</title><author>Hoyle, Alexander ; Goel, Pranav ; Resnik, Philip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24490551443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Distillation</topic><toplevel>online_resources</toplevel><creatorcontrib>Hoyle, Alexander</creatorcontrib><creatorcontrib>Goel, Pranav</creatorcontrib><creatorcontrib>Resnik, Philip</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoyle, Alexander</au><au>Goel, Pranav</au><au>Resnik, Philip</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Improving Neural Topic Models using Knowledge Distillation</atitle><jtitle>arXiv.org</jtitle><date>2020-10-05</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Topic models are often used to identify human-interpretable topics to help make sense of large document collections. We use knowledge distillation to combine the best attributes of probabilistic topic models and pretrained transformers. Our modular method can be straightforwardly applied with any neural topic model to improve topic quality, which we demonstrate using two models having disparate architectures, obtaining state-of-the-art topic coherence. We show that our adaptable framework not only improves performance in the aggregate over all estimated topics, as is commonly reported, but also in head-to-head comparisons of aligned topics.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2449055144 |
source | Free E- Journals |
subjects | Distillation |
title | Improving Neural Topic Models using Knowledge Distillation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A45%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Improving%20Neural%20Topic%20Models%20using%20Knowledge%20Distillation&rft.jtitle=arXiv.org&rft.au=Hoyle,%20Alexander&rft.date=2020-10-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2449055144%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449055144&rft_id=info:pmid/&rfr_iscdi=true |