Joint Turn and Dialogue level User Satisfaction Estimation on Multi-Domain Conversations
Dialogue level quality estimation is vital for optimizing data driven dialogue management. Current automated methods to estimate turn and dialogue level user satisfaction employ hand-crafted features and rely on complex annotation schemes, which reduce the generalizability of the trained models. We...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bodigutla, Praveen Kumar Tiwari, Aditya Josep Valls Vargas Polymenakos, Lazaros Matsoukas, Spyros |
description | Dialogue level quality estimation is vital for optimizing data driven dialogue management. Current automated methods to estimate turn and dialogue level user satisfaction employ hand-crafted features and rely on complex annotation schemes, which reduce the generalizability of the trained models. We propose a novel user satisfaction estimation approach which minimizes an adaptive multi-task loss function in order to jointly predict turn-level Response Quality labels provided by experts and explicit dialogue-level ratings provided by end users. The proposed BiLSTM based deep neural net model automatically weighs each turn's contribution towards the estimated dialogue-level rating, implicitly encodes temporal dependencies, and removes the need to hand-craft features. On dialogues sampled from 28 Alexa domains, two dialogue systems and three user groups, the joint dialogue-level satisfaction estimation model achieved up to an absolute 27% (0.43->0.70) and 7% (0.63->0.70) improvement in linear correlation performance over baseline deep neural net and benchmark Gradient boosting regression models, respectively. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2449026655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2449026655</sourcerecordid><originalsourceid>FETCH-proquest_journals_24490266553</originalsourceid><addsrcrecordid>eNqNjs0KwjAQhIMgWLTvsOC5UNMf9dxWRPBkBW9l0VRS0kSzSZ_fID6AMDAD38DMjEU8yzbJLud8wWKiIU1TXm55UWQRu52M1A5abzWgfkAtUZmnF6DEJBRcSVi4oJPU491Jo6EhJ0f8xqCzV04mtRlRaqiMnoSlL6QVm_eoSMQ_X7L1oWmrY_Ky5u0FuW4wYTSgjuf5Pjwqw6H_Wh-Wf0IU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449026655</pqid></control><display><type>article</type><title>Joint Turn and Dialogue level User Satisfaction Estimation on Multi-Domain Conversations</title><source>Free E- Journals</source><creator>Bodigutla, Praveen Kumar ; Tiwari, Aditya ; Josep Valls Vargas ; Polymenakos, Lazaros ; Matsoukas, Spyros</creator><creatorcontrib>Bodigutla, Praveen Kumar ; Tiwari, Aditya ; Josep Valls Vargas ; Polymenakos, Lazaros ; Matsoukas, Spyros</creatorcontrib><description>Dialogue level quality estimation is vital for optimizing data driven dialogue management. Current automated methods to estimate turn and dialogue level user satisfaction employ hand-crafted features and rely on complex annotation schemes, which reduce the generalizability of the trained models. We propose a novel user satisfaction estimation approach which minimizes an adaptive multi-task loss function in order to jointly predict turn-level Response Quality labels provided by experts and explicit dialogue-level ratings provided by end users. The proposed BiLSTM based deep neural net model automatically weighs each turn's contribution towards the estimated dialogue-level rating, implicitly encodes temporal dependencies, and removes the need to hand-craft features. On dialogues sampled from 28 Alexa domains, two dialogue systems and three user groups, the joint dialogue-level satisfaction estimation model achieved up to an absolute 27% (0.43->0.70) and 7% (0.63->0.70) improvement in linear correlation performance over baseline deep neural net and benchmark Gradient boosting regression models, respectively.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Annotations ; Domains ; End users ; Regression models ; User groups ; User satisfaction</subject><ispartof>arXiv.org, 2020-10</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Bodigutla, Praveen Kumar</creatorcontrib><creatorcontrib>Tiwari, Aditya</creatorcontrib><creatorcontrib>Josep Valls Vargas</creatorcontrib><creatorcontrib>Polymenakos, Lazaros</creatorcontrib><creatorcontrib>Matsoukas, Spyros</creatorcontrib><title>Joint Turn and Dialogue level User Satisfaction Estimation on Multi-Domain Conversations</title><title>arXiv.org</title><description>Dialogue level quality estimation is vital for optimizing data driven dialogue management. Current automated methods to estimate turn and dialogue level user satisfaction employ hand-crafted features and rely on complex annotation schemes, which reduce the generalizability of the trained models. We propose a novel user satisfaction estimation approach which minimizes an adaptive multi-task loss function in order to jointly predict turn-level Response Quality labels provided by experts and explicit dialogue-level ratings provided by end users. The proposed BiLSTM based deep neural net model automatically weighs each turn's contribution towards the estimated dialogue-level rating, implicitly encodes temporal dependencies, and removes the need to hand-craft features. On dialogues sampled from 28 Alexa domains, two dialogue systems and three user groups, the joint dialogue-level satisfaction estimation model achieved up to an absolute 27% (0.43->0.70) and 7% (0.63->0.70) improvement in linear correlation performance over baseline deep neural net and benchmark Gradient boosting regression models, respectively.</description><subject>Annotations</subject><subject>Domains</subject><subject>End users</subject><subject>Regression models</subject><subject>User groups</subject><subject>User satisfaction</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjs0KwjAQhIMgWLTvsOC5UNMf9dxWRPBkBW9l0VRS0kSzSZ_fID6AMDAD38DMjEU8yzbJLud8wWKiIU1TXm55UWQRu52M1A5abzWgfkAtUZmnF6DEJBRcSVi4oJPU491Jo6EhJ0f8xqCzV04mtRlRaqiMnoSlL6QVm_eoSMQ_X7L1oWmrY_Ky5u0FuW4wYTSgjuf5Pjwqw6H_Wh-Wf0IU</recordid><startdate>20201008</startdate><enddate>20201008</enddate><creator>Bodigutla, Praveen Kumar</creator><creator>Tiwari, Aditya</creator><creator>Josep Valls Vargas</creator><creator>Polymenakos, Lazaros</creator><creator>Matsoukas, Spyros</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201008</creationdate><title>Joint Turn and Dialogue level User Satisfaction Estimation on Multi-Domain Conversations</title><author>Bodigutla, Praveen Kumar ; Tiwari, Aditya ; Josep Valls Vargas ; Polymenakos, Lazaros ; Matsoukas, Spyros</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24490266553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Annotations</topic><topic>Domains</topic><topic>End users</topic><topic>Regression models</topic><topic>User groups</topic><topic>User satisfaction</topic><toplevel>online_resources</toplevel><creatorcontrib>Bodigutla, Praveen Kumar</creatorcontrib><creatorcontrib>Tiwari, Aditya</creatorcontrib><creatorcontrib>Josep Valls Vargas</creatorcontrib><creatorcontrib>Polymenakos, Lazaros</creatorcontrib><creatorcontrib>Matsoukas, Spyros</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bodigutla, Praveen Kumar</au><au>Tiwari, Aditya</au><au>Josep Valls Vargas</au><au>Polymenakos, Lazaros</au><au>Matsoukas, Spyros</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Joint Turn and Dialogue level User Satisfaction Estimation on Multi-Domain Conversations</atitle><jtitle>arXiv.org</jtitle><date>2020-10-08</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Dialogue level quality estimation is vital for optimizing data driven dialogue management. Current automated methods to estimate turn and dialogue level user satisfaction employ hand-crafted features and rely on complex annotation schemes, which reduce the generalizability of the trained models. We propose a novel user satisfaction estimation approach which minimizes an adaptive multi-task loss function in order to jointly predict turn-level Response Quality labels provided by experts and explicit dialogue-level ratings provided by end users. The proposed BiLSTM based deep neural net model automatically weighs each turn's contribution towards the estimated dialogue-level rating, implicitly encodes temporal dependencies, and removes the need to hand-craft features. On dialogues sampled from 28 Alexa domains, two dialogue systems and three user groups, the joint dialogue-level satisfaction estimation model achieved up to an absolute 27% (0.43->0.70) and 7% (0.63->0.70) improvement in linear correlation performance over baseline deep neural net and benchmark Gradient boosting regression models, respectively.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2449026655 |
source | Free E- Journals |
subjects | Annotations Domains End users Regression models User groups User satisfaction |
title | Joint Turn and Dialogue level User Satisfaction Estimation on Multi-Domain Conversations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T09%3A04%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Joint%20Turn%20and%20Dialogue%20level%20User%20Satisfaction%20Estimation%20on%20Multi-Domain%20Conversations&rft.jtitle=arXiv.org&rft.au=Bodigutla,%20Praveen%20Kumar&rft.date=2020-10-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2449026655%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449026655&rft_id=info:pmid/&rfr_iscdi=true |