Magnetic flux quantum periodicity of the frequency of the on-chip detectable electromagnetic radiation from superconducting flux-flow-oscillators

Superconducting flux-flow-oscillators (FFOs) based on unidirectional flow of magnetic vortices in a single-long Josephson junction (JJ) and operating at 4.2 K are key elements of sub-terahertz integrated-receivers used in radio-astronomy and atmospheric science. Here, we report on the development of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2020-10, Vol.117 (14)
Hauptverfasser: Chesca, Boris, John, Daniel, Gaifullin, Marat, Cox, Jonathan, Murphy, Aidan, Savel'ev, Sergey, Mellor, Christopher J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 14
container_start_page
container_title Applied physics letters
container_volume 117
creator Chesca, Boris
John, Daniel
Gaifullin, Marat
Cox, Jonathan
Murphy, Aidan
Savel'ev, Sergey
Mellor, Christopher J.
description Superconducting flux-flow-oscillators (FFOs) based on unidirectional flow of magnetic vortices in a single-long Josephson junction (JJ) and operating at 4.2 K are key elements of sub-terahertz integrated-receivers used in radio-astronomy and atmospheric science. Here, we report on the development of sub-terahertz FFOs based on parallel JJ-arrays made of YBa2Cu3O7−δ thin films. Sharp multiple flux-flow resonances were observed in the temperature range 77–89 K in asymmetric JJ-arrays, suggesting that they can operate as a narrow-band FFO in sub-terahertz integrated-receivers at more practical temperatures than 4.2 K. We detected electromagnetic radiation (EM) emitted by symmetric JJ-arrays in the range of 30–45 K using on-chip build superconducting detectors based on single JJs. For both asymmetric and symmetric JJ-arrays, the frequency f of the emitted radiation could be tuned continuously by an applied magnetic flux Φ with a one-flux-quantum Φ0 periodicity. Remarkably, since f can be tuned continuously, there are no gaps in the frequency range of the emitted EM. The fundamental Φ0-periodicity of f(Φ) is similar in nature to a SQUID's voltage response V(Φ) and, consequently, using high-performance magnetic flux-to-field conversion and readout techniques, a sensitive field-to-frequency magnetometer can be developed. Incorporated into non-accessible micro/nanostructures as a magnetic sensor, it would allow precise measurements of magnetic-fields from a distance, without the need to measure it locally as the radiation is detected remotely.
doi_str_mv 10.1063/5.0021970
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2448980203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448980203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-71b6072538d0384a245711103a217682d4a123138870815e50b700f16891cd03</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEuWx4A8ssQIpMGMnsbtEFS-piE33kes4YJTGwXaAfgZ_jGlLWSCxmofO3Ks7hJwgXCCU_LK4AGA4FrBDRghCZBxR7pIRAPCsHBe4Tw5CeEljwTgfkc8H9dSZaDVt2uGDvg6qi8OC9sZbV1tt45K6hsZnQxtvXgfT6e3CdZl-tj2tTTQ6qnlrqGlT593iR9Or2qpoXZeu3YKGIelq19WDjrZ7WllmTeveMxe0bVsVnQ9HZK9RbTDHm3pIZjfXs8ldNn28vZ9cTTPNSxYzgfMSBCu4rIHLXLG8EIgIXDEUpWR1rpBx5FIKkFiYAuYCoMFSjlGnk0NyupbtvUu5Qqxe3OC75FixPJdjCQx4os7WlPYuBG-aqvd2ofyyQqi-H14V1ebhiT1fsylLXKXewm_O_4JVXzf_wX-VvwB9L4_1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448980203</pqid></control><display><type>article</type><title>Magnetic flux quantum periodicity of the frequency of the on-chip detectable electromagnetic radiation from superconducting flux-flow-oscillators</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Chesca, Boris ; John, Daniel ; Gaifullin, Marat ; Cox, Jonathan ; Murphy, Aidan ; Savel'ev, Sergey ; Mellor, Christopher J.</creator><creatorcontrib>Chesca, Boris ; John, Daniel ; Gaifullin, Marat ; Cox, Jonathan ; Murphy, Aidan ; Savel'ev, Sergey ; Mellor, Christopher J.</creatorcontrib><description>Superconducting flux-flow-oscillators (FFOs) based on unidirectional flow of magnetic vortices in a single-long Josephson junction (JJ) and operating at 4.2 K are key elements of sub-terahertz integrated-receivers used in radio-astronomy and atmospheric science. Here, we report on the development of sub-terahertz FFOs based on parallel JJ-arrays made of YBa2Cu3O7−δ thin films. Sharp multiple flux-flow resonances were observed in the temperature range 77–89 K in asymmetric JJ-arrays, suggesting that they can operate as a narrow-band FFO in sub-terahertz integrated-receivers at more practical temperatures than 4.2 K. We detected electromagnetic radiation (EM) emitted by symmetric JJ-arrays in the range of 30–45 K using on-chip build superconducting detectors based on single JJs. For both asymmetric and symmetric JJ-arrays, the frequency f of the emitted radiation could be tuned continuously by an applied magnetic flux Φ with a one-flux-quantum Φ0 periodicity. Remarkably, since f can be tuned continuously, there are no gaps in the frequency range of the emitted EM. The fundamental Φ0-periodicity of f(Φ) is similar in nature to a SQUID's voltage response V(Φ) and, consequently, using high-performance magnetic flux-to-field conversion and readout techniques, a sensitive field-to-frequency magnetometer can be developed. Incorporated into non-accessible micro/nanostructures as a magnetic sensor, it would allow precise measurements of magnetic-fields from a distance, without the need to measure it locally as the radiation is detected remotely.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0021970</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Arrays ; Astronomy ; Asymmetry ; Electromagnetic radiation ; Fluid dynamics ; Fluid flow ; Frequency ranges ; Josephson junctions ; Magnetic flux ; Magnetometers ; Oscillators ; Periodic variations ; Receivers ; Superconducting quantum interference devices ; Superconductivity ; Terahertz frequencies ; Thin films ; YBCO superconductors</subject><ispartof>Applied physics letters, 2020-10, Vol.117 (14)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-71b6072538d0384a245711103a217682d4a123138870815e50b700f16891cd03</citedby><cites>FETCH-LOGICAL-c362t-71b6072538d0384a245711103a217682d4a123138870815e50b700f16891cd03</cites><orcidid>0000-0001-9279-7771 ; 0000-0001-5987-7876 ; 0000-0002-9557-4941 ; 0000-0003-2771-230X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0021970$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,778,782,792,4500,27907,27908,76135</link.rule.ids></links><search><creatorcontrib>Chesca, Boris</creatorcontrib><creatorcontrib>John, Daniel</creatorcontrib><creatorcontrib>Gaifullin, Marat</creatorcontrib><creatorcontrib>Cox, Jonathan</creatorcontrib><creatorcontrib>Murphy, Aidan</creatorcontrib><creatorcontrib>Savel'ev, Sergey</creatorcontrib><creatorcontrib>Mellor, Christopher J.</creatorcontrib><title>Magnetic flux quantum periodicity of the frequency of the on-chip detectable electromagnetic radiation from superconducting flux-flow-oscillators</title><title>Applied physics letters</title><description>Superconducting flux-flow-oscillators (FFOs) based on unidirectional flow of magnetic vortices in a single-long Josephson junction (JJ) and operating at 4.2 K are key elements of sub-terahertz integrated-receivers used in radio-astronomy and atmospheric science. Here, we report on the development of sub-terahertz FFOs based on parallel JJ-arrays made of YBa2Cu3O7−δ thin films. Sharp multiple flux-flow resonances were observed in the temperature range 77–89 K in asymmetric JJ-arrays, suggesting that they can operate as a narrow-band FFO in sub-terahertz integrated-receivers at more practical temperatures than 4.2 K. We detected electromagnetic radiation (EM) emitted by symmetric JJ-arrays in the range of 30–45 K using on-chip build superconducting detectors based on single JJs. For both asymmetric and symmetric JJ-arrays, the frequency f of the emitted radiation could be tuned continuously by an applied magnetic flux Φ with a one-flux-quantum Φ0 periodicity. Remarkably, since f can be tuned continuously, there are no gaps in the frequency range of the emitted EM. The fundamental Φ0-periodicity of f(Φ) is similar in nature to a SQUID's voltage response V(Φ) and, consequently, using high-performance magnetic flux-to-field conversion and readout techniques, a sensitive field-to-frequency magnetometer can be developed. Incorporated into non-accessible micro/nanostructures as a magnetic sensor, it would allow precise measurements of magnetic-fields from a distance, without the need to measure it locally as the radiation is detected remotely.</description><subject>Applied physics</subject><subject>Arrays</subject><subject>Astronomy</subject><subject>Asymmetry</subject><subject>Electromagnetic radiation</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Frequency ranges</subject><subject>Josephson junctions</subject><subject>Magnetic flux</subject><subject>Magnetometers</subject><subject>Oscillators</subject><subject>Periodic variations</subject><subject>Receivers</subject><subject>Superconducting quantum interference devices</subject><subject>Superconductivity</subject><subject>Terahertz frequencies</subject><subject>Thin films</subject><subject>YBCO superconductors</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEuWx4A8ssQIpMGMnsbtEFS-piE33kes4YJTGwXaAfgZ_jGlLWSCxmofO3Ks7hJwgXCCU_LK4AGA4FrBDRghCZBxR7pIRAPCsHBe4Tw5CeEljwTgfkc8H9dSZaDVt2uGDvg6qi8OC9sZbV1tt45K6hsZnQxtvXgfT6e3CdZl-tj2tTTQ6qnlrqGlT593iR9Or2qpoXZeu3YKGIelq19WDjrZ7WllmTeveMxe0bVsVnQ9HZK9RbTDHm3pIZjfXs8ldNn28vZ9cTTPNSxYzgfMSBCu4rIHLXLG8EIgIXDEUpWR1rpBx5FIKkFiYAuYCoMFSjlGnk0NyupbtvUu5Qqxe3OC75FixPJdjCQx4os7WlPYuBG-aqvd2ofyyQqi-H14V1ebhiT1fsylLXKXewm_O_4JVXzf_wX-VvwB9L4_1</recordid><startdate>20201005</startdate><enddate>20201005</enddate><creator>Chesca, Boris</creator><creator>John, Daniel</creator><creator>Gaifullin, Marat</creator><creator>Cox, Jonathan</creator><creator>Murphy, Aidan</creator><creator>Savel'ev, Sergey</creator><creator>Mellor, Christopher J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9279-7771</orcidid><orcidid>https://orcid.org/0000-0001-5987-7876</orcidid><orcidid>https://orcid.org/0000-0002-9557-4941</orcidid><orcidid>https://orcid.org/0000-0003-2771-230X</orcidid></search><sort><creationdate>20201005</creationdate><title>Magnetic flux quantum periodicity of the frequency of the on-chip detectable electromagnetic radiation from superconducting flux-flow-oscillators</title><author>Chesca, Boris ; John, Daniel ; Gaifullin, Marat ; Cox, Jonathan ; Murphy, Aidan ; Savel'ev, Sergey ; Mellor, Christopher J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-71b6072538d0384a245711103a217682d4a123138870815e50b700f16891cd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Arrays</topic><topic>Astronomy</topic><topic>Asymmetry</topic><topic>Electromagnetic radiation</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Frequency ranges</topic><topic>Josephson junctions</topic><topic>Magnetic flux</topic><topic>Magnetometers</topic><topic>Oscillators</topic><topic>Periodic variations</topic><topic>Receivers</topic><topic>Superconducting quantum interference devices</topic><topic>Superconductivity</topic><topic>Terahertz frequencies</topic><topic>Thin films</topic><topic>YBCO superconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chesca, Boris</creatorcontrib><creatorcontrib>John, Daniel</creatorcontrib><creatorcontrib>Gaifullin, Marat</creatorcontrib><creatorcontrib>Cox, Jonathan</creatorcontrib><creatorcontrib>Murphy, Aidan</creatorcontrib><creatorcontrib>Savel'ev, Sergey</creatorcontrib><creatorcontrib>Mellor, Christopher J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chesca, Boris</au><au>John, Daniel</au><au>Gaifullin, Marat</au><au>Cox, Jonathan</au><au>Murphy, Aidan</au><au>Savel'ev, Sergey</au><au>Mellor, Christopher J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic flux quantum periodicity of the frequency of the on-chip detectable electromagnetic radiation from superconducting flux-flow-oscillators</atitle><jtitle>Applied physics letters</jtitle><date>2020-10-05</date><risdate>2020</risdate><volume>117</volume><issue>14</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Superconducting flux-flow-oscillators (FFOs) based on unidirectional flow of magnetic vortices in a single-long Josephson junction (JJ) and operating at 4.2 K are key elements of sub-terahertz integrated-receivers used in radio-astronomy and atmospheric science. Here, we report on the development of sub-terahertz FFOs based on parallel JJ-arrays made of YBa2Cu3O7−δ thin films. Sharp multiple flux-flow resonances were observed in the temperature range 77–89 K in asymmetric JJ-arrays, suggesting that they can operate as a narrow-band FFO in sub-terahertz integrated-receivers at more practical temperatures than 4.2 K. We detected electromagnetic radiation (EM) emitted by symmetric JJ-arrays in the range of 30–45 K using on-chip build superconducting detectors based on single JJs. For both asymmetric and symmetric JJ-arrays, the frequency f of the emitted radiation could be tuned continuously by an applied magnetic flux Φ with a one-flux-quantum Φ0 periodicity. Remarkably, since f can be tuned continuously, there are no gaps in the frequency range of the emitted EM. The fundamental Φ0-periodicity of f(Φ) is similar in nature to a SQUID's voltage response V(Φ) and, consequently, using high-performance magnetic flux-to-field conversion and readout techniques, a sensitive field-to-frequency magnetometer can be developed. Incorporated into non-accessible micro/nanostructures as a magnetic sensor, it would allow precise measurements of magnetic-fields from a distance, without the need to measure it locally as the radiation is detected remotely.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0021970</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9279-7771</orcidid><orcidid>https://orcid.org/0000-0001-5987-7876</orcidid><orcidid>https://orcid.org/0000-0002-9557-4941</orcidid><orcidid>https://orcid.org/0000-0003-2771-230X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2020-10, Vol.117 (14)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2448980203
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Arrays
Astronomy
Asymmetry
Electromagnetic radiation
Fluid dynamics
Fluid flow
Frequency ranges
Josephson junctions
Magnetic flux
Magnetometers
Oscillators
Periodic variations
Receivers
Superconducting quantum interference devices
Superconductivity
Terahertz frequencies
Thin films
YBCO superconductors
title Magnetic flux quantum periodicity of the frequency of the on-chip detectable electromagnetic radiation from superconducting flux-flow-oscillators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A06%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20flux%20quantum%20periodicity%20of%20the%20frequency%20of%20the%20on-chip%20detectable%20electromagnetic%20radiation%20from%20superconducting%20flux-flow-oscillators&rft.jtitle=Applied%20physics%20letters&rft.au=Chesca,%20Boris&rft.date=2020-10-05&rft.volume=117&rft.issue=14&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0021970&rft_dat=%3Cproquest_scita%3E2448980203%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448980203&rft_id=info:pmid/&rfr_iscdi=true