In situ encapsulated Co/MnOx nanoparticles inside quasi-MOF-74 for the higher alcohols synthesis from syngas

[Display omitted] •The Co/MnOx nanoparticles were in situ encapsulated within quasi-MOF-74 by controlled deligandation of CoMn-MOF-74.•Co/MnOx@quasi-MOF-74 core-shell catalyst showed 48.7 wt% of ROH selectivity, where of 93.2 wt% is C2+OH.•Very low CH4 and indetectable CO2 were produced during the r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. B, Environmental Environmental, 2020-12, Vol.278, p.119262, Article 119262
Hauptverfasser: Cui, Wen-Gang, Li, Yan-Ting, Zhang, Hongbo, Wei, Zheng-Chang, Gao, Bo-Hai, Dai, Jing-Jing, Hu, Tong-Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 119262
container_title Applied catalysis. B, Environmental
container_volume 278
creator Cui, Wen-Gang
Li, Yan-Ting
Zhang, Hongbo
Wei, Zheng-Chang
Gao, Bo-Hai
Dai, Jing-Jing
Hu, Tong-Liang
description [Display omitted] •The Co/MnOx nanoparticles were in situ encapsulated within quasi-MOF-74 by controlled deligandation of CoMn-MOF-74.•Co/MnOx@quasi-MOF-74 core-shell catalyst showed 48.7 wt% of ROH selectivity, where of 93.2 wt% is C2+OH.•Very low CH4 and indetectable CO2 were produced during the reaction.•Co0, Co2+ and Co2C collaborate with each other to enhance C2+OH formation during the reaction. Selective conversion of syngas (CO/H2) to higher alcohols (C2+OH) is of great interest but presents a significant challenge in keeping an appropriate balance between the carbon chain growth and CO insertion to achieve a high C2+OH selectivity. Herein we found that a core-shell Co/MnOx@quasi-MOF-74 catalyst can be easily constructed through controlled deligandation of a bimetallic CoMn-MOF-74 by partial pyrolysis strategy. The as-obtained Co/MnOx@quasi-MOF-74 catalyst produces three types of synergistic active sites (Co°, coordinatively unsaturated sites (CUSs) of Co2+ and Co2C) that collaborate with each other to enhance C2+OH formation during the reaction. The Co° nanoparticles within the framework of quasi-MOF-74 enable CO dissociation and significant CHx-CHy coupling to occur while the uniformly distributed CUSs of Co2+ working with Co2C strengthen CO insertion process, leading an outstanding catalytic performance in the process of CO hydrogenation. The total selectivity of alcohols (ROH) reached 48.7 wt%, where of 93.2 wt% can be C2+OH, and very low CH4 and indetectable CO2 were produced at 200 °C, 3.0 MPa (CO/H2 = 1/2) and a gaseous hourly space velocity (GHSV) of 4500 mL g−1 h−1, reaching the catalytic performance comparable to that of the optimal level of multifunctional catalyst operated at much higher pressure (6.0 MPa). This work highlights the potential of using MOF-derived quasi-MOF materials as a tunable platform to explore highly efficient catalysts for syngas conversion.
doi_str_mv 10.1016/j.apcatb.2020.119262
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2448958192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337320306779</els_id><sourcerecordid>2448958192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-2da88b5ac5f01c3d91cb0ec20fa32ab4bc4cd23b92698984113f6cd52626d3463</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwBhwscU7rv6TOBQlVFCq16gXOlmM7ras0Tr0JgrfHVThzWu1oZlfzIfRIyYwSWsyPM90Z3VczRliSaMkKdoUmVC54xqXk12hCkpZxvuC36A7gSAhhnMkJatYtBt8P2LVGdzA0uncWL8N82-6-cavb0OnYe9M4wL4Fbx0-Dxp8tt2tsoXAdYi4Pzh88PuDi1g3JhxCAxh-2iSDB1zHcLqsew336KbWDbiHvzlFn6vXj-V7ttm9rZcvm8xwLvqMWS1llWuT14QabktqKuIMI7XmTFeiMsJYxqtUqZSlFJTyujA2T60Ly0XBp-hpvNvFcB4c9OoYhtiml4oJIctcJkTJJUaXiQEgulp10Z90_FGUqAtXdVQjV3XhqkauKfY8xlxq8OVdVGB8ouesj870ygb__4Ffb5eDHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448958192</pqid></control><display><type>article</type><title>In situ encapsulated Co/MnOx nanoparticles inside quasi-MOF-74 for the higher alcohols synthesis from syngas</title><source>Elsevier ScienceDirect Journals</source><creator>Cui, Wen-Gang ; Li, Yan-Ting ; Zhang, Hongbo ; Wei, Zheng-Chang ; Gao, Bo-Hai ; Dai, Jing-Jing ; Hu, Tong-Liang</creator><creatorcontrib>Cui, Wen-Gang ; Li, Yan-Ting ; Zhang, Hongbo ; Wei, Zheng-Chang ; Gao, Bo-Hai ; Dai, Jing-Jing ; Hu, Tong-Liang</creatorcontrib><description>[Display omitted] •The Co/MnOx nanoparticles were in situ encapsulated within quasi-MOF-74 by controlled deligandation of CoMn-MOF-74.•Co/MnOx@quasi-MOF-74 core-shell catalyst showed 48.7 wt% of ROH selectivity, where of 93.2 wt% is C2+OH.•Very low CH4 and indetectable CO2 were produced during the reaction.•Co0, Co2+ and Co2C collaborate with each other to enhance C2+OH formation during the reaction. Selective conversion of syngas (CO/H2) to higher alcohols (C2+OH) is of great interest but presents a significant challenge in keeping an appropriate balance between the carbon chain growth and CO insertion to achieve a high C2+OH selectivity. Herein we found that a core-shell Co/MnOx@quasi-MOF-74 catalyst can be easily constructed through controlled deligandation of a bimetallic CoMn-MOF-74 by partial pyrolysis strategy. The as-obtained Co/MnOx@quasi-MOF-74 catalyst produces three types of synergistic active sites (Co°, coordinatively unsaturated sites (CUSs) of Co2+ and Co2C) that collaborate with each other to enhance C2+OH formation during the reaction. The Co° nanoparticles within the framework of quasi-MOF-74 enable CO dissociation and significant CHx-CHy coupling to occur while the uniformly distributed CUSs of Co2+ working with Co2C strengthen CO insertion process, leading an outstanding catalytic performance in the process of CO hydrogenation. The total selectivity of alcohols (ROH) reached 48.7 wt%, where of 93.2 wt% can be C2+OH, and very low CH4 and indetectable CO2 were produced at 200 °C, 3.0 MPa (CO/H2 = 1/2) and a gaseous hourly space velocity (GHSV) of 4500 mL g−1 h−1, reaching the catalytic performance comparable to that of the optimal level of multifunctional catalyst operated at much higher pressure (6.0 MPa). This work highlights the potential of using MOF-derived quasi-MOF materials as a tunable platform to explore highly efficient catalysts for syngas conversion.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2020.119262</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Alcohol ; Alcohols ; Bimetals ; Carbon dioxide ; Carbon monoxide ; Catalysts ; Cobalt ; Conversion ; Heterogeneous catalysis ; Higher alcohols ; Insertion ; Metal-organic frameworks ; Molecular chains ; Nanoparticles ; Pyrolysis ; Selectivity ; Synergistic effects ; Syngas conversion ; Synthesis gas</subject><ispartof>Applied catalysis. B, Environmental, 2020-12, Vol.278, p.119262, Article 119262</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Dec 5, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-2da88b5ac5f01c3d91cb0ec20fa32ab4bc4cd23b92698984113f6cd52626d3463</citedby><cites>FETCH-LOGICAL-c334t-2da88b5ac5f01c3d91cb0ec20fa32ab4bc4cd23b92698984113f6cd52626d3463</cites><orcidid>0000-0001-9619-9867</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0926337320306779$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Cui, Wen-Gang</creatorcontrib><creatorcontrib>Li, Yan-Ting</creatorcontrib><creatorcontrib>Zhang, Hongbo</creatorcontrib><creatorcontrib>Wei, Zheng-Chang</creatorcontrib><creatorcontrib>Gao, Bo-Hai</creatorcontrib><creatorcontrib>Dai, Jing-Jing</creatorcontrib><creatorcontrib>Hu, Tong-Liang</creatorcontrib><title>In situ encapsulated Co/MnOx nanoparticles inside quasi-MOF-74 for the higher alcohols synthesis from syngas</title><title>Applied catalysis. B, Environmental</title><description>[Display omitted] •The Co/MnOx nanoparticles were in situ encapsulated within quasi-MOF-74 by controlled deligandation of CoMn-MOF-74.•Co/MnOx@quasi-MOF-74 core-shell catalyst showed 48.7 wt% of ROH selectivity, where of 93.2 wt% is C2+OH.•Very low CH4 and indetectable CO2 were produced during the reaction.•Co0, Co2+ and Co2C collaborate with each other to enhance C2+OH formation during the reaction. Selective conversion of syngas (CO/H2) to higher alcohols (C2+OH) is of great interest but presents a significant challenge in keeping an appropriate balance between the carbon chain growth and CO insertion to achieve a high C2+OH selectivity. Herein we found that a core-shell Co/MnOx@quasi-MOF-74 catalyst can be easily constructed through controlled deligandation of a bimetallic CoMn-MOF-74 by partial pyrolysis strategy. The as-obtained Co/MnOx@quasi-MOF-74 catalyst produces three types of synergistic active sites (Co°, coordinatively unsaturated sites (CUSs) of Co2+ and Co2C) that collaborate with each other to enhance C2+OH formation during the reaction. The Co° nanoparticles within the framework of quasi-MOF-74 enable CO dissociation and significant CHx-CHy coupling to occur while the uniformly distributed CUSs of Co2+ working with Co2C strengthen CO insertion process, leading an outstanding catalytic performance in the process of CO hydrogenation. The total selectivity of alcohols (ROH) reached 48.7 wt%, where of 93.2 wt% can be C2+OH, and very low CH4 and indetectable CO2 were produced at 200 °C, 3.0 MPa (CO/H2 = 1/2) and a gaseous hourly space velocity (GHSV) of 4500 mL g−1 h−1, reaching the catalytic performance comparable to that of the optimal level of multifunctional catalyst operated at much higher pressure (6.0 MPa). This work highlights the potential of using MOF-derived quasi-MOF materials as a tunable platform to explore highly efficient catalysts for syngas conversion.</description><subject>Alcohol</subject><subject>Alcohols</subject><subject>Bimetals</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Catalysts</subject><subject>Cobalt</subject><subject>Conversion</subject><subject>Heterogeneous catalysis</subject><subject>Higher alcohols</subject><subject>Insertion</subject><subject>Metal-organic frameworks</subject><subject>Molecular chains</subject><subject>Nanoparticles</subject><subject>Pyrolysis</subject><subject>Selectivity</subject><subject>Synergistic effects</subject><subject>Syngas conversion</subject><subject>Synthesis gas</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwBhwscU7rv6TOBQlVFCq16gXOlmM7ras0Tr0JgrfHVThzWu1oZlfzIfRIyYwSWsyPM90Z3VczRliSaMkKdoUmVC54xqXk12hCkpZxvuC36A7gSAhhnMkJatYtBt8P2LVGdzA0uncWL8N82-6-cavb0OnYe9M4wL4Fbx0-Dxp8tt2tsoXAdYi4Pzh88PuDi1g3JhxCAxh-2iSDB1zHcLqsew336KbWDbiHvzlFn6vXj-V7ttm9rZcvm8xwLvqMWS1llWuT14QabktqKuIMI7XmTFeiMsJYxqtUqZSlFJTyujA2T60Ly0XBp-hpvNvFcB4c9OoYhtiml4oJIctcJkTJJUaXiQEgulp10Z90_FGUqAtXdVQjV3XhqkauKfY8xlxq8OVdVGB8ouesj870ygb__4Ffb5eDHw</recordid><startdate>20201205</startdate><enddate>20201205</enddate><creator>Cui, Wen-Gang</creator><creator>Li, Yan-Ting</creator><creator>Zhang, Hongbo</creator><creator>Wei, Zheng-Chang</creator><creator>Gao, Bo-Hai</creator><creator>Dai, Jing-Jing</creator><creator>Hu, Tong-Liang</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-9619-9867</orcidid></search><sort><creationdate>20201205</creationdate><title>In situ encapsulated Co/MnOx nanoparticles inside quasi-MOF-74 for the higher alcohols synthesis from syngas</title><author>Cui, Wen-Gang ; Li, Yan-Ting ; Zhang, Hongbo ; Wei, Zheng-Chang ; Gao, Bo-Hai ; Dai, Jing-Jing ; Hu, Tong-Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-2da88b5ac5f01c3d91cb0ec20fa32ab4bc4cd23b92698984113f6cd52626d3463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alcohol</topic><topic>Alcohols</topic><topic>Bimetals</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Catalysts</topic><topic>Cobalt</topic><topic>Conversion</topic><topic>Heterogeneous catalysis</topic><topic>Higher alcohols</topic><topic>Insertion</topic><topic>Metal-organic frameworks</topic><topic>Molecular chains</topic><topic>Nanoparticles</topic><topic>Pyrolysis</topic><topic>Selectivity</topic><topic>Synergistic effects</topic><topic>Syngas conversion</topic><topic>Synthesis gas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Wen-Gang</creatorcontrib><creatorcontrib>Li, Yan-Ting</creatorcontrib><creatorcontrib>Zhang, Hongbo</creatorcontrib><creatorcontrib>Wei, Zheng-Chang</creatorcontrib><creatorcontrib>Gao, Bo-Hai</creatorcontrib><creatorcontrib>Dai, Jing-Jing</creatorcontrib><creatorcontrib>Hu, Tong-Liang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Wen-Gang</au><au>Li, Yan-Ting</au><au>Zhang, Hongbo</au><au>Wei, Zheng-Chang</au><au>Gao, Bo-Hai</au><au>Dai, Jing-Jing</au><au>Hu, Tong-Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ encapsulated Co/MnOx nanoparticles inside quasi-MOF-74 for the higher alcohols synthesis from syngas</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2020-12-05</date><risdate>2020</risdate><volume>278</volume><spage>119262</spage><pages>119262-</pages><artnum>119262</artnum><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>[Display omitted] •The Co/MnOx nanoparticles were in situ encapsulated within quasi-MOF-74 by controlled deligandation of CoMn-MOF-74.•Co/MnOx@quasi-MOF-74 core-shell catalyst showed 48.7 wt% of ROH selectivity, where of 93.2 wt% is C2+OH.•Very low CH4 and indetectable CO2 were produced during the reaction.•Co0, Co2+ and Co2C collaborate with each other to enhance C2+OH formation during the reaction. Selective conversion of syngas (CO/H2) to higher alcohols (C2+OH) is of great interest but presents a significant challenge in keeping an appropriate balance between the carbon chain growth and CO insertion to achieve a high C2+OH selectivity. Herein we found that a core-shell Co/MnOx@quasi-MOF-74 catalyst can be easily constructed through controlled deligandation of a bimetallic CoMn-MOF-74 by partial pyrolysis strategy. The as-obtained Co/MnOx@quasi-MOF-74 catalyst produces three types of synergistic active sites (Co°, coordinatively unsaturated sites (CUSs) of Co2+ and Co2C) that collaborate with each other to enhance C2+OH formation during the reaction. The Co° nanoparticles within the framework of quasi-MOF-74 enable CO dissociation and significant CHx-CHy coupling to occur while the uniformly distributed CUSs of Co2+ working with Co2C strengthen CO insertion process, leading an outstanding catalytic performance in the process of CO hydrogenation. The total selectivity of alcohols (ROH) reached 48.7 wt%, where of 93.2 wt% can be C2+OH, and very low CH4 and indetectable CO2 were produced at 200 °C, 3.0 MPa (CO/H2 = 1/2) and a gaseous hourly space velocity (GHSV) of 4500 mL g−1 h−1, reaching the catalytic performance comparable to that of the optimal level of multifunctional catalyst operated at much higher pressure (6.0 MPa). This work highlights the potential of using MOF-derived quasi-MOF materials as a tunable platform to explore highly efficient catalysts for syngas conversion.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2020.119262</doi><orcidid>https://orcid.org/0000-0001-9619-9867</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0926-3373
ispartof Applied catalysis. B, Environmental, 2020-12, Vol.278, p.119262, Article 119262
issn 0926-3373
1873-3883
language eng
recordid cdi_proquest_journals_2448958192
source Elsevier ScienceDirect Journals
subjects Alcohol
Alcohols
Bimetals
Carbon dioxide
Carbon monoxide
Catalysts
Cobalt
Conversion
Heterogeneous catalysis
Higher alcohols
Insertion
Metal-organic frameworks
Molecular chains
Nanoparticles
Pyrolysis
Selectivity
Synergistic effects
Syngas conversion
Synthesis gas
title In situ encapsulated Co/MnOx nanoparticles inside quasi-MOF-74 for the higher alcohols synthesis from syngas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A45%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20encapsulated%20Co/MnOx%20nanoparticles%20inside%20quasi-MOF-74%20for%20the%20higher%20alcohols%20synthesis%20from%20syngas&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Cui,%20Wen-Gang&rft.date=2020-12-05&rft.volume=278&rft.spage=119262&rft.pages=119262-&rft.artnum=119262&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2020.119262&rft_dat=%3Cproquest_cross%3E2448958192%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448958192&rft_id=info:pmid/&rft_els_id=S0926337320306779&rfr_iscdi=true