Design and analysis of lattice metamaterials composed of circular-arc curved beam elements

•A design strategy for lattice metamaterials assembled from arch-type elements is proposed.•Theoretical models of the large deformation circular-curve shaped beams are established.•Lattice metamaterials composed of arch-type cells exhibit nonlinear and tunable properties. A rationally design of latt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials letters 2020-10, Vol.277, p.128376, Article 128376
Hauptverfasser: Fu, Yutong, Liu, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 128376
container_title Materials letters
container_volume 277
creator Fu, Yutong
Liu, Wei
description •A design strategy for lattice metamaterials assembled from arch-type elements is proposed.•Theoretical models of the large deformation circular-curve shaped beams are established.•Lattice metamaterials composed of arch-type cells exhibit nonlinear and tunable properties. A rationally design of lattice metamaterials composed of circular-arc curved beam elements for independently tailored stiffness in different loading directions is presented. Theoretical models are developed to predict the force–displacement relationship of the proposed structural cells. Lattice metamaterials are manufactured using 3D printing techniques and mechanically tested. The results supported by the finite element method (FEM) show that lattice materials composed of circular-arc curved beam elements exhibit remarkable properties. This work provides the guiding principles to design mechanical metamaterials with controlled stiffness, which presents the promising potentials in biomedical applications.
doi_str_mv 10.1016/j.matlet.2020.128376
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2448947377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167577X20310818</els_id><sourcerecordid>2448947377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-61d612b27c0158f1191302dca59b1614176e6f23f7f8cea0faade93bca57ee5c3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AxcF1x3zatNuBBmfMOBGQdyE9PZGUvoYk8zA_Hsz1LWLy4XDdw6cQ8g1oytGWXnbrQYTe4wrTnmSeCVUeUIWrFIil7WqT8kiYSovlPo8JxchdJRSWVO5IF8PGNz3mJmxTWf6Q3Ahm2zWmxgdYDZgNCkcvTN9yGAatlPA9kiA87Drjc-Nhwx2fp_kBs2QYY8DjjFckjObTHj195fk4-nxff2Sb96eX9f3mxyEkDEvWVsy3nAFlBWVZaxmgvIWTFE3rGSSqRJLy4VVtgI01BrTYi2aBCjEAsSS3My5Wz_97DBE3U07n7oEzaWsaqmEUomSMwV-CsGj1VvvBuMPmlF9XFF3el5RH1fU84rJdjfbMDXYO_Q6gMMRsHUeIep2cv8H_AJkLX36</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448947377</pqid></control><display><type>article</type><title>Design and analysis of lattice metamaterials composed of circular-arc curved beam elements</title><source>Access via ScienceDirect (Elsevier)</source><creator>Fu, Yutong ; Liu, Wei</creator><creatorcontrib>Fu, Yutong ; Liu, Wei</creatorcontrib><description>•A design strategy for lattice metamaterials assembled from arch-type elements is proposed.•Theoretical models of the large deformation circular-curve shaped beams are established.•Lattice metamaterials composed of arch-type cells exhibit nonlinear and tunable properties. A rationally design of lattice metamaterials composed of circular-arc curved beam elements for independently tailored stiffness in different loading directions is presented. Theoretical models are developed to predict the force–displacement relationship of the proposed structural cells. Lattice metamaterials are manufactured using 3D printing techniques and mechanically tested. The results supported by the finite element method (FEM) show that lattice materials composed of circular-arc curved beam elements exhibit remarkable properties. This work provides the guiding principles to design mechanical metamaterials with controlled stiffness, which presents the promising potentials in biomedical applications.</description><identifier>ISSN: 0167-577X</identifier><identifier>EISSN: 1873-4979</identifier><identifier>DOI: 10.1016/j.matlet.2020.128376</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Biomedical materials ; Circular-arc curved beam ; Curved beams ; Elastic properties ; Finite element method ; Lattice ; Lattice design ; Materials science ; Mechanical metamaterial ; Metamaterials ; Stiffness ; Structural ; Three dimensional printing</subject><ispartof>Materials letters, 2020-10, Vol.277, p.128376, Article 128376</ispartof><rights>2020</rights><rights>Copyright Elsevier BV Oct 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-61d612b27c0158f1191302dca59b1614176e6f23f7f8cea0faade93bca57ee5c3</citedby><cites>FETCH-LOGICAL-c334t-61d612b27c0158f1191302dca59b1614176e6f23f7f8cea0faade93bca57ee5c3</cites><orcidid>0000-0003-4134-1795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.matlet.2020.128376$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Fu, Yutong</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><title>Design and analysis of lattice metamaterials composed of circular-arc curved beam elements</title><title>Materials letters</title><description>•A design strategy for lattice metamaterials assembled from arch-type elements is proposed.•Theoretical models of the large deformation circular-curve shaped beams are established.•Lattice metamaterials composed of arch-type cells exhibit nonlinear and tunable properties. A rationally design of lattice metamaterials composed of circular-arc curved beam elements for independently tailored stiffness in different loading directions is presented. Theoretical models are developed to predict the force–displacement relationship of the proposed structural cells. Lattice metamaterials are manufactured using 3D printing techniques and mechanically tested. The results supported by the finite element method (FEM) show that lattice materials composed of circular-arc curved beam elements exhibit remarkable properties. This work provides the guiding principles to design mechanical metamaterials with controlled stiffness, which presents the promising potentials in biomedical applications.</description><subject>Biomedical materials</subject><subject>Circular-arc curved beam</subject><subject>Curved beams</subject><subject>Elastic properties</subject><subject>Finite element method</subject><subject>Lattice</subject><subject>Lattice design</subject><subject>Materials science</subject><subject>Mechanical metamaterial</subject><subject>Metamaterials</subject><subject>Stiffness</subject><subject>Structural</subject><subject>Three dimensional printing</subject><issn>0167-577X</issn><issn>1873-4979</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AxcF1x3zatNuBBmfMOBGQdyE9PZGUvoYk8zA_Hsz1LWLy4XDdw6cQ8g1oytGWXnbrQYTe4wrTnmSeCVUeUIWrFIil7WqT8kiYSovlPo8JxchdJRSWVO5IF8PGNz3mJmxTWf6Q3Ahm2zWmxgdYDZgNCkcvTN9yGAatlPA9kiA87Drjc-Nhwx2fp_kBs2QYY8DjjFckjObTHj195fk4-nxff2Sb96eX9f3mxyEkDEvWVsy3nAFlBWVZaxmgvIWTFE3rGSSqRJLy4VVtgI01BrTYi2aBCjEAsSS3My5Wz_97DBE3U07n7oEzaWsaqmEUomSMwV-CsGj1VvvBuMPmlF9XFF3el5RH1fU84rJdjfbMDXYO_Q6gMMRsHUeIep2cv8H_AJkLX36</recordid><startdate>20201015</startdate><enddate>20201015</enddate><creator>Fu, Yutong</creator><creator>Liu, Wei</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-4134-1795</orcidid></search><sort><creationdate>20201015</creationdate><title>Design and analysis of lattice metamaterials composed of circular-arc curved beam elements</title><author>Fu, Yutong ; Liu, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-61d612b27c0158f1191302dca59b1614176e6f23f7f8cea0faade93bca57ee5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomedical materials</topic><topic>Circular-arc curved beam</topic><topic>Curved beams</topic><topic>Elastic properties</topic><topic>Finite element method</topic><topic>Lattice</topic><topic>Lattice design</topic><topic>Materials science</topic><topic>Mechanical metamaterial</topic><topic>Metamaterials</topic><topic>Stiffness</topic><topic>Structural</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Yutong</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Yutong</au><au>Liu, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and analysis of lattice metamaterials composed of circular-arc curved beam elements</atitle><jtitle>Materials letters</jtitle><date>2020-10-15</date><risdate>2020</risdate><volume>277</volume><spage>128376</spage><pages>128376-</pages><artnum>128376</artnum><issn>0167-577X</issn><eissn>1873-4979</eissn><abstract>•A design strategy for lattice metamaterials assembled from arch-type elements is proposed.•Theoretical models of the large deformation circular-curve shaped beams are established.•Lattice metamaterials composed of arch-type cells exhibit nonlinear and tunable properties. A rationally design of lattice metamaterials composed of circular-arc curved beam elements for independently tailored stiffness in different loading directions is presented. Theoretical models are developed to predict the force–displacement relationship of the proposed structural cells. Lattice metamaterials are manufactured using 3D printing techniques and mechanically tested. The results supported by the finite element method (FEM) show that lattice materials composed of circular-arc curved beam elements exhibit remarkable properties. This work provides the guiding principles to design mechanical metamaterials with controlled stiffness, which presents the promising potentials in biomedical applications.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.matlet.2020.128376</doi><orcidid>https://orcid.org/0000-0003-4134-1795</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0167-577X
ispartof Materials letters, 2020-10, Vol.277, p.128376, Article 128376
issn 0167-577X
1873-4979
language eng
recordid cdi_proquest_journals_2448947377
source Access via ScienceDirect (Elsevier)
subjects Biomedical materials
Circular-arc curved beam
Curved beams
Elastic properties
Finite element method
Lattice
Lattice design
Materials science
Mechanical metamaterial
Metamaterials
Stiffness
Structural
Three dimensional printing
title Design and analysis of lattice metamaterials composed of circular-arc curved beam elements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A19%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20analysis%20of%20lattice%20metamaterials%20composed%20of%20circular-arc%20curved%20beam%20elements&rft.jtitle=Materials%20letters&rft.au=Fu,%20Yutong&rft.date=2020-10-15&rft.volume=277&rft.spage=128376&rft.pages=128376-&rft.artnum=128376&rft.issn=0167-577X&rft.eissn=1873-4979&rft_id=info:doi/10.1016/j.matlet.2020.128376&rft_dat=%3Cproquest_cross%3E2448947377%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448947377&rft_id=info:pmid/&rft_els_id=S0167577X20310818&rfr_iscdi=true