Sliding on ice: Real contact area, melted film thickness, and friction force

•We experimentally measure the contact area and friction force arising from high-speed sliding of quartz on ice, with the relative velocity ranging from 1 to 10 m/s.•Contact area of ice and quartz is visualized using an optical setup based on the total internal reflection.•The friction force is expe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2020-10, Vol.160, p.120166, Article 120166
Hauptverfasser: Yun, Changho, Choi, Jin Woo, Kim, Hyungseok, Kim, Dongjo, Kim, Ho-Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 120166
container_title International journal of heat and mass transfer
container_volume 160
creator Yun, Changho
Choi, Jin Woo
Kim, Hyungseok
Kim, Dongjo
Kim, Ho-Young
description •We experimentally measure the contact area and friction force arising from high-speed sliding of quartz on ice, with the relative velocity ranging from 1 to 10 m/s.•Contact area of ice and quartz is visualized using an optical setup based on the total internal reflection.•The friction force is experimentally shown to be nearly proportional to the contact area if the film thickness changes little.•Scaling laws are constructed to predict the temporal evolutions of the contact area, the friction force and the melted film thickness. It is easy to slide on ice because of water films arising as a consequence of frictional melting. Although the friction force of ice and a slider critically depends on the area and thickness of the liquid film as well as the sliding speed, direct experimental visualization and quantification of temporal evolutions of the contact area, film thickness, and the resulting friction force have been scarce to date. Here we develop an experimental technique to visualize the contact area of ice asperities and a high-speed sliding surface in situ based on the optical principle of total internal reflection. We construct a hydrodynamic model to predict the contact area, liquid film thickness and friction force of a model system of hemispherical ice on a flat solid surface. Upon showing good agreement between theory and experiment, we briefly discuss how the fundamental understanding of the friction behavior of a single ice bump can be extended to understand the friction behavior of flat ice surfaces.
doi_str_mv 10.1016/j.ijheatmasstransfer.2020.120166
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2448945041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931020331021</els_id><sourcerecordid>2448945041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-364b41ef26d668a253fa38ca68f65b7442e158ad4655bb6c89630e19d0664763</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMouK7-h4AXD9s1SdM09aSInywIuveQphM3tR9rkhX892apNy-ehpn3nXeYB6ELSpaUUHHZLl27AR17HUL0eggW_JIRlmSWdHGAZlSWVcaorA7RjBBaZlVOyTE6CaHdt4SLGVq9da5xwzseB-wMXOFX0B024xC1iVh70AvcQxehwdZ1PY4bZz4GCGGB9ZBm3pno0q4dvYFTdGR1F-Dst87R-v5uffuYrV4enm5vVpnJSxKzXPCaU7BMNEJIzYrc6lwaLaQVRV1yzoAWUjdcFEVdCyMrkROgVUOE4KXI5-h8it368XMHIap23PkhXVSMc1nxgnCaXNeTy_gxBA9Wbb3rtf9WlKg9QtWqvwjVHqGaEKaI5ykC0jNfLqnBOBgMNM6DiaoZ3f_DfgArm4Tr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448945041</pqid></control><display><type>article</type><title>Sliding on ice: Real contact area, melted film thickness, and friction force</title><source>Elsevier ScienceDirect Journals</source><creator>Yun, Changho ; Choi, Jin Woo ; Kim, Hyungseok ; Kim, Dongjo ; Kim, Ho-Young</creator><creatorcontrib>Yun, Changho ; Choi, Jin Woo ; Kim, Hyungseok ; Kim, Dongjo ; Kim, Ho-Young</creatorcontrib><description>•We experimentally measure the contact area and friction force arising from high-speed sliding of quartz on ice, with the relative velocity ranging from 1 to 10 m/s.•Contact area of ice and quartz is visualized using an optical setup based on the total internal reflection.•The friction force is experimentally shown to be nearly proportional to the contact area if the film thickness changes little.•Scaling laws are constructed to predict the temporal evolutions of the contact area, the friction force and the melted film thickness. It is easy to slide on ice because of water films arising as a consequence of frictional melting. Although the friction force of ice and a slider critically depends on the area and thickness of the liquid film as well as the sliding speed, direct experimental visualization and quantification of temporal evolutions of the contact area, film thickness, and the resulting friction force have been scarce to date. Here we develop an experimental technique to visualize the contact area of ice asperities and a high-speed sliding surface in situ based on the optical principle of total internal reflection. We construct a hydrodynamic model to predict the contact area, liquid film thickness and friction force of a model system of hemispherical ice on a flat solid surface. Upon showing good agreement between theory and experiment, we briefly discuss how the fundamental understanding of the friction behavior of a single ice bump can be extended to understand the friction behavior of flat ice surfaces.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2020.120166</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Contact area ; Contact melting ; Film thickness ; Friction ; Ice ; Liquid film ; Melting ; Sliding ; Solid surfaces ; Visualization ; Water film</subject><ispartof>International journal of heat and mass transfer, 2020-10, Vol.160, p.120166, Article 120166</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-364b41ef26d668a253fa38ca68f65b7442e158ad4655bb6c89630e19d0664763</citedby><cites>FETCH-LOGICAL-c370t-364b41ef26d668a253fa38ca68f65b7442e158ad4655bb6c89630e19d0664763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931020331021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Yun, Changho</creatorcontrib><creatorcontrib>Choi, Jin Woo</creatorcontrib><creatorcontrib>Kim, Hyungseok</creatorcontrib><creatorcontrib>Kim, Dongjo</creatorcontrib><creatorcontrib>Kim, Ho-Young</creatorcontrib><title>Sliding on ice: Real contact area, melted film thickness, and friction force</title><title>International journal of heat and mass transfer</title><description>•We experimentally measure the contact area and friction force arising from high-speed sliding of quartz on ice, with the relative velocity ranging from 1 to 10 m/s.•Contact area of ice and quartz is visualized using an optical setup based on the total internal reflection.•The friction force is experimentally shown to be nearly proportional to the contact area if the film thickness changes little.•Scaling laws are constructed to predict the temporal evolutions of the contact area, the friction force and the melted film thickness. It is easy to slide on ice because of water films arising as a consequence of frictional melting. Although the friction force of ice and a slider critically depends on the area and thickness of the liquid film as well as the sliding speed, direct experimental visualization and quantification of temporal evolutions of the contact area, film thickness, and the resulting friction force have been scarce to date. Here we develop an experimental technique to visualize the contact area of ice asperities and a high-speed sliding surface in situ based on the optical principle of total internal reflection. We construct a hydrodynamic model to predict the contact area, liquid film thickness and friction force of a model system of hemispherical ice on a flat solid surface. Upon showing good agreement between theory and experiment, we briefly discuss how the fundamental understanding of the friction behavior of a single ice bump can be extended to understand the friction behavior of flat ice surfaces.</description><subject>Contact area</subject><subject>Contact melting</subject><subject>Film thickness</subject><subject>Friction</subject><subject>Ice</subject><subject>Liquid film</subject><subject>Melting</subject><subject>Sliding</subject><subject>Solid surfaces</subject><subject>Visualization</subject><subject>Water film</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LxDAQhoMouK7-h4AXD9s1SdM09aSInywIuveQphM3tR9rkhX892apNy-ehpn3nXeYB6ELSpaUUHHZLl27AR17HUL0eggW_JIRlmSWdHGAZlSWVcaorA7RjBBaZlVOyTE6CaHdt4SLGVq9da5xwzseB-wMXOFX0B024xC1iVh70AvcQxehwdZ1PY4bZz4GCGGB9ZBm3pno0q4dvYFTdGR1F-Dst87R-v5uffuYrV4enm5vVpnJSxKzXPCaU7BMNEJIzYrc6lwaLaQVRV1yzoAWUjdcFEVdCyMrkROgVUOE4KXI5-h8it368XMHIap23PkhXVSMc1nxgnCaXNeTy_gxBA9Wbb3rtf9WlKg9QtWqvwjVHqGaEKaI5ykC0jNfLqnBOBgMNM6DiaoZ3f_DfgArm4Tr</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Yun, Changho</creator><creator>Choi, Jin Woo</creator><creator>Kim, Hyungseok</creator><creator>Kim, Dongjo</creator><creator>Kim, Ho-Young</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>202010</creationdate><title>Sliding on ice: Real contact area, melted film thickness, and friction force</title><author>Yun, Changho ; Choi, Jin Woo ; Kim, Hyungseok ; Kim, Dongjo ; Kim, Ho-Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-364b41ef26d668a253fa38ca68f65b7442e158ad4655bb6c89630e19d0664763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Contact area</topic><topic>Contact melting</topic><topic>Film thickness</topic><topic>Friction</topic><topic>Ice</topic><topic>Liquid film</topic><topic>Melting</topic><topic>Sliding</topic><topic>Solid surfaces</topic><topic>Visualization</topic><topic>Water film</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yun, Changho</creatorcontrib><creatorcontrib>Choi, Jin Woo</creatorcontrib><creatorcontrib>Kim, Hyungseok</creatorcontrib><creatorcontrib>Kim, Dongjo</creatorcontrib><creatorcontrib>Kim, Ho-Young</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yun, Changho</au><au>Choi, Jin Woo</au><au>Kim, Hyungseok</au><au>Kim, Dongjo</au><au>Kim, Ho-Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sliding on ice: Real contact area, melted film thickness, and friction force</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2020-10</date><risdate>2020</risdate><volume>160</volume><spage>120166</spage><pages>120166-</pages><artnum>120166</artnum><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•We experimentally measure the contact area and friction force arising from high-speed sliding of quartz on ice, with the relative velocity ranging from 1 to 10 m/s.•Contact area of ice and quartz is visualized using an optical setup based on the total internal reflection.•The friction force is experimentally shown to be nearly proportional to the contact area if the film thickness changes little.•Scaling laws are constructed to predict the temporal evolutions of the contact area, the friction force and the melted film thickness. It is easy to slide on ice because of water films arising as a consequence of frictional melting. Although the friction force of ice and a slider critically depends on the area and thickness of the liquid film as well as the sliding speed, direct experimental visualization and quantification of temporal evolutions of the contact area, film thickness, and the resulting friction force have been scarce to date. Here we develop an experimental technique to visualize the contact area of ice asperities and a high-speed sliding surface in situ based on the optical principle of total internal reflection. We construct a hydrodynamic model to predict the contact area, liquid film thickness and friction force of a model system of hemispherical ice on a flat solid surface. Upon showing good agreement between theory and experiment, we briefly discuss how the fundamental understanding of the friction behavior of a single ice bump can be extended to understand the friction behavior of flat ice surfaces.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2020.120166</doi></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2020-10, Vol.160, p.120166, Article 120166
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_journals_2448945041
source Elsevier ScienceDirect Journals
subjects Contact area
Contact melting
Film thickness
Friction
Ice
Liquid film
Melting
Sliding
Solid surfaces
Visualization
Water film
title Sliding on ice: Real contact area, melted film thickness, and friction force
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A10%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sliding%20on%20ice:%20Real%20contact%20area,%20melted%20film%20thickness,%20and%20friction%20force&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Yun,%20Changho&rft.date=2020-10&rft.volume=160&rft.spage=120166&rft.pages=120166-&rft.artnum=120166&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2020.120166&rft_dat=%3Cproquest_cross%3E2448945041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448945041&rft_id=info:pmid/&rft_els_id=S0017931020331021&rfr_iscdi=true