Sliding on ice: Real contact area, melted film thickness, and friction force
•We experimentally measure the contact area and friction force arising from high-speed sliding of quartz on ice, with the relative velocity ranging from 1 to 10 m/s.•Contact area of ice and quartz is visualized using an optical setup based on the total internal reflection.•The friction force is expe...
Gespeichert in:
Veröffentlicht in: | International journal of heat and mass transfer 2020-10, Vol.160, p.120166, Article 120166 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 120166 |
container_title | International journal of heat and mass transfer |
container_volume | 160 |
creator | Yun, Changho Choi, Jin Woo Kim, Hyungseok Kim, Dongjo Kim, Ho-Young |
description | •We experimentally measure the contact area and friction force arising from high-speed sliding of quartz on ice, with the relative velocity ranging from 1 to 10 m/s.•Contact area of ice and quartz is visualized using an optical setup based on the total internal reflection.•The friction force is experimentally shown to be nearly proportional to the contact area if the film thickness changes little.•Scaling laws are constructed to predict the temporal evolutions of the contact area, the friction force and the melted film thickness.
It is easy to slide on ice because of water films arising as a consequence of frictional melting. Although the friction force of ice and a slider critically depends on the area and thickness of the liquid film as well as the sliding speed, direct experimental visualization and quantification of temporal evolutions of the contact area, film thickness, and the resulting friction force have been scarce to date. Here we develop an experimental technique to visualize the contact area of ice asperities and a high-speed sliding surface in situ based on the optical principle of total internal reflection. We construct a hydrodynamic model to predict the contact area, liquid film thickness and friction force of a model system of hemispherical ice on a flat solid surface. Upon showing good agreement between theory and experiment, we briefly discuss how the fundamental understanding of the friction behavior of a single ice bump can be extended to understand the friction behavior of flat ice surfaces. |
doi_str_mv | 10.1016/j.ijheatmasstransfer.2020.120166 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2448945041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931020331021</els_id><sourcerecordid>2448945041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-364b41ef26d668a253fa38ca68f65b7442e158ad4655bb6c89630e19d0664763</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMouK7-h4AXD9s1SdM09aSInywIuveQphM3tR9rkhX892apNy-ehpn3nXeYB6ELSpaUUHHZLl27AR17HUL0eggW_JIRlmSWdHGAZlSWVcaorA7RjBBaZlVOyTE6CaHdt4SLGVq9da5xwzseB-wMXOFX0B024xC1iVh70AvcQxehwdZ1PY4bZz4GCGGB9ZBm3pno0q4dvYFTdGR1F-Dst87R-v5uffuYrV4enm5vVpnJSxKzXPCaU7BMNEJIzYrc6lwaLaQVRV1yzoAWUjdcFEVdCyMrkROgVUOE4KXI5-h8it368XMHIap23PkhXVSMc1nxgnCaXNeTy_gxBA9Wbb3rtf9WlKg9QtWqvwjVHqGaEKaI5ykC0jNfLqnBOBgMNM6DiaoZ3f_DfgArm4Tr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448945041</pqid></control><display><type>article</type><title>Sliding on ice: Real contact area, melted film thickness, and friction force</title><source>Elsevier ScienceDirect Journals</source><creator>Yun, Changho ; Choi, Jin Woo ; Kim, Hyungseok ; Kim, Dongjo ; Kim, Ho-Young</creator><creatorcontrib>Yun, Changho ; Choi, Jin Woo ; Kim, Hyungseok ; Kim, Dongjo ; Kim, Ho-Young</creatorcontrib><description>•We experimentally measure the contact area and friction force arising from high-speed sliding of quartz on ice, with the relative velocity ranging from 1 to 10 m/s.•Contact area of ice and quartz is visualized using an optical setup based on the total internal reflection.•The friction force is experimentally shown to be nearly proportional to the contact area if the film thickness changes little.•Scaling laws are constructed to predict the temporal evolutions of the contact area, the friction force and the melted film thickness.
It is easy to slide on ice because of water films arising as a consequence of frictional melting. Although the friction force of ice and a slider critically depends on the area and thickness of the liquid film as well as the sliding speed, direct experimental visualization and quantification of temporal evolutions of the contact area, film thickness, and the resulting friction force have been scarce to date. Here we develop an experimental technique to visualize the contact area of ice asperities and a high-speed sliding surface in situ based on the optical principle of total internal reflection. We construct a hydrodynamic model to predict the contact area, liquid film thickness and friction force of a model system of hemispherical ice on a flat solid surface. Upon showing good agreement between theory and experiment, we briefly discuss how the fundamental understanding of the friction behavior of a single ice bump can be extended to understand the friction behavior of flat ice surfaces.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2020.120166</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Contact area ; Contact melting ; Film thickness ; Friction ; Ice ; Liquid film ; Melting ; Sliding ; Solid surfaces ; Visualization ; Water film</subject><ispartof>International journal of heat and mass transfer, 2020-10, Vol.160, p.120166, Article 120166</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-364b41ef26d668a253fa38ca68f65b7442e158ad4655bb6c89630e19d0664763</citedby><cites>FETCH-LOGICAL-c370t-364b41ef26d668a253fa38ca68f65b7442e158ad4655bb6c89630e19d0664763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931020331021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Yun, Changho</creatorcontrib><creatorcontrib>Choi, Jin Woo</creatorcontrib><creatorcontrib>Kim, Hyungseok</creatorcontrib><creatorcontrib>Kim, Dongjo</creatorcontrib><creatorcontrib>Kim, Ho-Young</creatorcontrib><title>Sliding on ice: Real contact area, melted film thickness, and friction force</title><title>International journal of heat and mass transfer</title><description>•We experimentally measure the contact area and friction force arising from high-speed sliding of quartz on ice, with the relative velocity ranging from 1 to 10 m/s.•Contact area of ice and quartz is visualized using an optical setup based on the total internal reflection.•The friction force is experimentally shown to be nearly proportional to the contact area if the film thickness changes little.•Scaling laws are constructed to predict the temporal evolutions of the contact area, the friction force and the melted film thickness.
It is easy to slide on ice because of water films arising as a consequence of frictional melting. Although the friction force of ice and a slider critically depends on the area and thickness of the liquid film as well as the sliding speed, direct experimental visualization and quantification of temporal evolutions of the contact area, film thickness, and the resulting friction force have been scarce to date. Here we develop an experimental technique to visualize the contact area of ice asperities and a high-speed sliding surface in situ based on the optical principle of total internal reflection. We construct a hydrodynamic model to predict the contact area, liquid film thickness and friction force of a model system of hemispherical ice on a flat solid surface. Upon showing good agreement between theory and experiment, we briefly discuss how the fundamental understanding of the friction behavior of a single ice bump can be extended to understand the friction behavior of flat ice surfaces.</description><subject>Contact area</subject><subject>Contact melting</subject><subject>Film thickness</subject><subject>Friction</subject><subject>Ice</subject><subject>Liquid film</subject><subject>Melting</subject><subject>Sliding</subject><subject>Solid surfaces</subject><subject>Visualization</subject><subject>Water film</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LxDAQhoMouK7-h4AXD9s1SdM09aSInywIuveQphM3tR9rkhX892apNy-ehpn3nXeYB6ELSpaUUHHZLl27AR17HUL0eggW_JIRlmSWdHGAZlSWVcaorA7RjBBaZlVOyTE6CaHdt4SLGVq9da5xwzseB-wMXOFX0B024xC1iVh70AvcQxehwdZ1PY4bZz4GCGGB9ZBm3pno0q4dvYFTdGR1F-Dst87R-v5uffuYrV4enm5vVpnJSxKzXPCaU7BMNEJIzYrc6lwaLaQVRV1yzoAWUjdcFEVdCyMrkROgVUOE4KXI5-h8it368XMHIap23PkhXVSMc1nxgnCaXNeTy_gxBA9Wbb3rtf9WlKg9QtWqvwjVHqGaEKaI5ykC0jNfLqnBOBgMNM6DiaoZ3f_DfgArm4Tr</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Yun, Changho</creator><creator>Choi, Jin Woo</creator><creator>Kim, Hyungseok</creator><creator>Kim, Dongjo</creator><creator>Kim, Ho-Young</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>202010</creationdate><title>Sliding on ice: Real contact area, melted film thickness, and friction force</title><author>Yun, Changho ; Choi, Jin Woo ; Kim, Hyungseok ; Kim, Dongjo ; Kim, Ho-Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-364b41ef26d668a253fa38ca68f65b7442e158ad4655bb6c89630e19d0664763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Contact area</topic><topic>Contact melting</topic><topic>Film thickness</topic><topic>Friction</topic><topic>Ice</topic><topic>Liquid film</topic><topic>Melting</topic><topic>Sliding</topic><topic>Solid surfaces</topic><topic>Visualization</topic><topic>Water film</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yun, Changho</creatorcontrib><creatorcontrib>Choi, Jin Woo</creatorcontrib><creatorcontrib>Kim, Hyungseok</creatorcontrib><creatorcontrib>Kim, Dongjo</creatorcontrib><creatorcontrib>Kim, Ho-Young</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yun, Changho</au><au>Choi, Jin Woo</au><au>Kim, Hyungseok</au><au>Kim, Dongjo</au><au>Kim, Ho-Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sliding on ice: Real contact area, melted film thickness, and friction force</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2020-10</date><risdate>2020</risdate><volume>160</volume><spage>120166</spage><pages>120166-</pages><artnum>120166</artnum><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•We experimentally measure the contact area and friction force arising from high-speed sliding of quartz on ice, with the relative velocity ranging from 1 to 10 m/s.•Contact area of ice and quartz is visualized using an optical setup based on the total internal reflection.•The friction force is experimentally shown to be nearly proportional to the contact area if the film thickness changes little.•Scaling laws are constructed to predict the temporal evolutions of the contact area, the friction force and the melted film thickness.
It is easy to slide on ice because of water films arising as a consequence of frictional melting. Although the friction force of ice and a slider critically depends on the area and thickness of the liquid film as well as the sliding speed, direct experimental visualization and quantification of temporal evolutions of the contact area, film thickness, and the resulting friction force have been scarce to date. Here we develop an experimental technique to visualize the contact area of ice asperities and a high-speed sliding surface in situ based on the optical principle of total internal reflection. We construct a hydrodynamic model to predict the contact area, liquid film thickness and friction force of a model system of hemispherical ice on a flat solid surface. Upon showing good agreement between theory and experiment, we briefly discuss how the fundamental understanding of the friction behavior of a single ice bump can be extended to understand the friction behavior of flat ice surfaces.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2020.120166</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 2020-10, Vol.160, p.120166, Article 120166 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_proquest_journals_2448945041 |
source | Elsevier ScienceDirect Journals |
subjects | Contact area Contact melting Film thickness Friction Ice Liquid film Melting Sliding Solid surfaces Visualization Water film |
title | Sliding on ice: Real contact area, melted film thickness, and friction force |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A10%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sliding%20on%20ice:%20Real%20contact%20area,%20melted%20film%20thickness,%20and%20friction%20force&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Yun,%20Changho&rft.date=2020-10&rft.volume=160&rft.spage=120166&rft.pages=120166-&rft.artnum=120166&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2020.120166&rft_dat=%3Cproquest_cross%3E2448945041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448945041&rft_id=info:pmid/&rft_els_id=S0017931020331021&rfr_iscdi=true |