Local thermal non-equilibrium effects on thermal pressurization in saturated porous media considering thermo-osmosis and thermal-filtration

This paper presents new fully-coupled analytical thermo-poroelastic solutions, introducing four new components to the traditional Local Thermal Non-Equilibrium (LTNE) theory: thermo-osmosis; thermal-filtration; heat sinks due to thermal expansion of the pore fluid and the solid phase; and vertical c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers and geotechnics 2020-10, Vol.126, p.103729, Article 103729
Hauptverfasser: Zhai, Xinle, Atefi-Monfared, Kamelia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 103729
container_title Computers and geotechnics
container_volume 126
creator Zhai, Xinle
Atefi-Monfared, Kamelia
description This paper presents new fully-coupled analytical thermo-poroelastic solutions, introducing four new components to the traditional Local Thermal Non-Equilibrium (LTNE) theory: thermo-osmosis; thermal-filtration; heat sinks due to thermal expansion of the pore fluid and the solid phase; and vertical confinement. Thermo-osmosis, thermal-filtration, and fluid dilation are found to have very different effects in case of LTNE versus local thermal equilibrium (LTE), resulting in a fundamentally different thermo-hydraulic-mechanical (THM) response. The aforementioned non-traditional thermal processes cause generation of notably higher pore pressures in the porous medium that cannot be otherwise predicted using current solutions. Fluid temperatures are more sensitive to these non-traditional thermal processes, compared to the solid phase temperatures. Thermo-osmosis is found to have more significant effects under LTNE compared to LTE, and to be the dominant mechanism affecting solid temperatures, pore pressures and stresses. Thermal-filtration and heat sink due to fluid thermal expansion are the dominant mechanisms affecting fluid temperatures. The vertical confinement and formation anisotropy is shown to notably impact the THM response of a porous layer to heat source or sink. The impact of the aforementioned four novel components are found to be enhanced under an impermeable hydraulic boundary compared to a permeable boundary condition.
doi_str_mv 10.1016/j.compgeo.2020.103729
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2448943699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266352X20302925</els_id><sourcerecordid>2448943699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-35ac815d8017b950c088735223f7aef69878b8ad560d70d069c964ad6ed4217d3</originalsourceid><addsrcrecordid>eNqFkM1KxDAUhYMoOI4-glBw3TFN2qRZiYh_MOBGwV3IJLdjyjTpJK2gr-BLm7GjW1cXDuecy_kQOi_wosAFu2wX2nf9GvyCYLLTKCfiAM2KmtOcM0oP0QwTxnJakddjdBJji1NO1GKGvpZeq002vEHo0nXe5bAd7caugh27DJoG9BAz7_4sfYAYx2A_1WCTbF0W1TAGNYDJeh_8GLMOjFWZ9i5aA8G69RT2uY-djzZmypnfvryxmyH8dJ2io0ZtIpzt7xy93N0-3zzky6f7x5vrZa4p5UNaoXRdVKbGBV-JCmtcp6EVIbThCpq0i9erWpmKYcOxwUxowUplGJiSFNzQObqYevvgtyPEQbZ-DC69lKQsa1FSJkRyVZNLBx9jgEb2wXYqfMgCyx132co9d7njLifuKXc15SBNeLcQZNQWnE5MQmIpjbf_NHwDfpaSIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448943699</pqid></control><display><type>article</type><title>Local thermal non-equilibrium effects on thermal pressurization in saturated porous media considering thermo-osmosis and thermal-filtration</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zhai, Xinle ; Atefi-Monfared, Kamelia</creator><creatorcontrib>Zhai, Xinle ; Atefi-Monfared, Kamelia</creatorcontrib><description>This paper presents new fully-coupled analytical thermo-poroelastic solutions, introducing four new components to the traditional Local Thermal Non-Equilibrium (LTNE) theory: thermo-osmosis; thermal-filtration; heat sinks due to thermal expansion of the pore fluid and the solid phase; and vertical confinement. Thermo-osmosis, thermal-filtration, and fluid dilation are found to have very different effects in case of LTNE versus local thermal equilibrium (LTE), resulting in a fundamentally different thermo-hydraulic-mechanical (THM) response. The aforementioned non-traditional thermal processes cause generation of notably higher pore pressures in the porous medium that cannot be otherwise predicted using current solutions. Fluid temperatures are more sensitive to these non-traditional thermal processes, compared to the solid phase temperatures. Thermo-osmosis is found to have more significant effects under LTNE compared to LTE, and to be the dominant mechanism affecting solid temperatures, pore pressures and stresses. Thermal-filtration and heat sink due to fluid thermal expansion are the dominant mechanisms affecting fluid temperatures. The vertical confinement and formation anisotropy is shown to notably impact the THM response of a porous layer to heat source or sink. The impact of the aforementioned four novel components are found to be enhanced under an impermeable hydraulic boundary compared to a permeable boundary condition.</description><identifier>ISSN: 0266-352X</identifier><identifier>EISSN: 1873-7633</identifier><identifier>DOI: 10.1016/j.compgeo.2020.103729</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Anisotropy ; Boundary conditions ; Components ; Confinement ; Filtration ; Heat ; Heat sinks ; Local thermal non-equilibrium ; Osmosis ; Porous media ; Pressurization ; Solid phases ; Thermal expansion ; Thermal-filtration ; Thermo-osmosis ; Thermo-poroelasticity ; Thermodynamic equilibrium ; Transverse isotropy ; Winkler model</subject><ispartof>Computers and geotechnics, 2020-10, Vol.126, p.103729, Article 103729</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-35ac815d8017b950c088735223f7aef69878b8ad560d70d069c964ad6ed4217d3</citedby><cites>FETCH-LOGICAL-c337t-35ac815d8017b950c088735223f7aef69878b8ad560d70d069c964ad6ed4217d3</cites><orcidid>0000-0001-9887-3069</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0266352X20302925$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Zhai, Xinle</creatorcontrib><creatorcontrib>Atefi-Monfared, Kamelia</creatorcontrib><title>Local thermal non-equilibrium effects on thermal pressurization in saturated porous media considering thermo-osmosis and thermal-filtration</title><title>Computers and geotechnics</title><description>This paper presents new fully-coupled analytical thermo-poroelastic solutions, introducing four new components to the traditional Local Thermal Non-Equilibrium (LTNE) theory: thermo-osmosis; thermal-filtration; heat sinks due to thermal expansion of the pore fluid and the solid phase; and vertical confinement. Thermo-osmosis, thermal-filtration, and fluid dilation are found to have very different effects in case of LTNE versus local thermal equilibrium (LTE), resulting in a fundamentally different thermo-hydraulic-mechanical (THM) response. The aforementioned non-traditional thermal processes cause generation of notably higher pore pressures in the porous medium that cannot be otherwise predicted using current solutions. Fluid temperatures are more sensitive to these non-traditional thermal processes, compared to the solid phase temperatures. Thermo-osmosis is found to have more significant effects under LTNE compared to LTE, and to be the dominant mechanism affecting solid temperatures, pore pressures and stresses. Thermal-filtration and heat sink due to fluid thermal expansion are the dominant mechanisms affecting fluid temperatures. The vertical confinement and formation anisotropy is shown to notably impact the THM response of a porous layer to heat source or sink. The impact of the aforementioned four novel components are found to be enhanced under an impermeable hydraulic boundary compared to a permeable boundary condition.</description><subject>Anisotropy</subject><subject>Boundary conditions</subject><subject>Components</subject><subject>Confinement</subject><subject>Filtration</subject><subject>Heat</subject><subject>Heat sinks</subject><subject>Local thermal non-equilibrium</subject><subject>Osmosis</subject><subject>Porous media</subject><subject>Pressurization</subject><subject>Solid phases</subject><subject>Thermal expansion</subject><subject>Thermal-filtration</subject><subject>Thermo-osmosis</subject><subject>Thermo-poroelasticity</subject><subject>Thermodynamic equilibrium</subject><subject>Transverse isotropy</subject><subject>Winkler model</subject><issn>0266-352X</issn><issn>1873-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KxDAUhYMoOI4-glBw3TFN2qRZiYh_MOBGwV3IJLdjyjTpJK2gr-BLm7GjW1cXDuecy_kQOi_wosAFu2wX2nf9GvyCYLLTKCfiAM2KmtOcM0oP0QwTxnJakddjdBJji1NO1GKGvpZeq002vEHo0nXe5bAd7caugh27DJoG9BAz7_4sfYAYx2A_1WCTbF0W1TAGNYDJeh_8GLMOjFWZ9i5aA8G69RT2uY-djzZmypnfvryxmyH8dJ2io0ZtIpzt7xy93N0-3zzky6f7x5vrZa4p5UNaoXRdVKbGBV-JCmtcp6EVIbThCpq0i9erWpmKYcOxwUxowUplGJiSFNzQObqYevvgtyPEQbZ-DC69lKQsa1FSJkRyVZNLBx9jgEb2wXYqfMgCyx132co9d7njLifuKXc15SBNeLcQZNQWnE5MQmIpjbf_NHwDfpaSIQ</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Zhai, Xinle</creator><creator>Atefi-Monfared, Kamelia</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9887-3069</orcidid></search><sort><creationdate>202010</creationdate><title>Local thermal non-equilibrium effects on thermal pressurization in saturated porous media considering thermo-osmosis and thermal-filtration</title><author>Zhai, Xinle ; Atefi-Monfared, Kamelia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-35ac815d8017b950c088735223f7aef69878b8ad560d70d069c964ad6ed4217d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropy</topic><topic>Boundary conditions</topic><topic>Components</topic><topic>Confinement</topic><topic>Filtration</topic><topic>Heat</topic><topic>Heat sinks</topic><topic>Local thermal non-equilibrium</topic><topic>Osmosis</topic><topic>Porous media</topic><topic>Pressurization</topic><topic>Solid phases</topic><topic>Thermal expansion</topic><topic>Thermal-filtration</topic><topic>Thermo-osmosis</topic><topic>Thermo-poroelasticity</topic><topic>Thermodynamic equilibrium</topic><topic>Transverse isotropy</topic><topic>Winkler model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Xinle</creatorcontrib><creatorcontrib>Atefi-Monfared, Kamelia</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers and geotechnics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhai, Xinle</au><au>Atefi-Monfared, Kamelia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local thermal non-equilibrium effects on thermal pressurization in saturated porous media considering thermo-osmosis and thermal-filtration</atitle><jtitle>Computers and geotechnics</jtitle><date>2020-10</date><risdate>2020</risdate><volume>126</volume><spage>103729</spage><pages>103729-</pages><artnum>103729</artnum><issn>0266-352X</issn><eissn>1873-7633</eissn><abstract>This paper presents new fully-coupled analytical thermo-poroelastic solutions, introducing four new components to the traditional Local Thermal Non-Equilibrium (LTNE) theory: thermo-osmosis; thermal-filtration; heat sinks due to thermal expansion of the pore fluid and the solid phase; and vertical confinement. Thermo-osmosis, thermal-filtration, and fluid dilation are found to have very different effects in case of LTNE versus local thermal equilibrium (LTE), resulting in a fundamentally different thermo-hydraulic-mechanical (THM) response. The aforementioned non-traditional thermal processes cause generation of notably higher pore pressures in the porous medium that cannot be otherwise predicted using current solutions. Fluid temperatures are more sensitive to these non-traditional thermal processes, compared to the solid phase temperatures. Thermo-osmosis is found to have more significant effects under LTNE compared to LTE, and to be the dominant mechanism affecting solid temperatures, pore pressures and stresses. Thermal-filtration and heat sink due to fluid thermal expansion are the dominant mechanisms affecting fluid temperatures. The vertical confinement and formation anisotropy is shown to notably impact the THM response of a porous layer to heat source or sink. The impact of the aforementioned four novel components are found to be enhanced under an impermeable hydraulic boundary compared to a permeable boundary condition.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compgeo.2020.103729</doi><orcidid>https://orcid.org/0000-0001-9887-3069</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0266-352X
ispartof Computers and geotechnics, 2020-10, Vol.126, p.103729, Article 103729
issn 0266-352X
1873-7633
language eng
recordid cdi_proquest_journals_2448943699
source Elsevier ScienceDirect Journals Complete
subjects Anisotropy
Boundary conditions
Components
Confinement
Filtration
Heat
Heat sinks
Local thermal non-equilibrium
Osmosis
Porous media
Pressurization
Solid phases
Thermal expansion
Thermal-filtration
Thermo-osmosis
Thermo-poroelasticity
Thermodynamic equilibrium
Transverse isotropy
Winkler model
title Local thermal non-equilibrium effects on thermal pressurization in saturated porous media considering thermo-osmosis and thermal-filtration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T11%3A10%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20thermal%20non-equilibrium%20effects%20on%20thermal%20pressurization%20in%20saturated%20porous%20media%20considering%20thermo-osmosis%20and%20thermal-filtration&rft.jtitle=Computers%20and%20geotechnics&rft.au=Zhai,%20Xinle&rft.date=2020-10&rft.volume=126&rft.spage=103729&rft.pages=103729-&rft.artnum=103729&rft.issn=0266-352X&rft.eissn=1873-7633&rft_id=info:doi/10.1016/j.compgeo.2020.103729&rft_dat=%3Cproquest_cross%3E2448943699%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448943699&rft_id=info:pmid/&rft_els_id=S0266352X20302925&rfr_iscdi=true